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Chapter 1

Numbering Systems

The goal of this textbook is to teach students how to design digital systems. To understand
what this means, it is necessary to understand the behavior of a digital system. A digital
system is a device which receives binary numbers as input and generates binary numbers as
output. A binary number is a number composed of bits, or binary digits. A bit is equal to 0
or 1. Generally, bits are represented by voltages, a 0 by a ground potential and a 1 by a 3.3v
or 5v potential. However, for most of this text, the physical representation of bits will take a
back seat to the the logical representation. Figure 1.1 shows a digital system with three bits
of input and two bits of output.

— F(A,B,C)
— G(A,B,C)

Digital
System

Figure 1.1: An abstract digital system with three bits of input labeled A,B,C and two bits of
output, F(A,B,C) and G(A,B,C).

The letters A, B,C in Figure 1.1 represent Boolean variables, variables which are only
allowed to assume the values 0 or 1. The notation F(A, B, C) means that the output depends
on the values of A, B, C.

Unfortunately, there is a disconnect between the normal way of describing quantities using
the digits 0...9 and that used by digital systems using the bits 0,1. The study of digital
systems starts by describing the numbering system used to describe decimal numbers and
binary numbers. These systems are positional numbering systems - the position of a digit
in a number determines its significance. The familiar decimal numbering system is used to
illustrate the main concepts in positional numbering system.

1.1 Decimal

The goal of any numbering system (this includes both decimal and binary) is to represent
quantities using a fixed set of symbols. One feature which distinguishes numbering systems is
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the number of symbols used to represent quantities, the numbering system’s base .

Decimal is a base-10 numbering system where quantities are expressed using 10 symbols
{0,1,2,3,4,5,6,7,8,9}. To explicitly denote a number’s base, include the base as a subscript
after the number. For example, the number of days in a year could be represented as 3651¢.

Each digit in a number represents a quantity which depends on the digit, the base, and the
position of the digit. The value of a digit is determined by the formula d * b* where d is the
digit, 4 is the position of the digit and b is the base. The position of the digit immediately to
the left of the decimal point is 0, every other digit is indexed startin%vfrom this position. The
value of a multidigit number is the sum of the values of the digits, >,_, d; *b’, where N is the
number of digits in the number. Thus 365 is interpreted as

351024+ 6% 10* + 5 10°

The leftmost digit is called the most significant digit and the rightmost digit is called the
least significant digit.

1.2 Binary

Binary is a base-2 numbering system where quantities are expressed using two symbols {0, 1}.
When verbally communicating a binary value like 1015, do not say “one hundred and one
base two”. The term hundred is a decimal concept and implies the quantity being described
is decimal, contradicting the “base two”. Instead, say “one zero one base two”, with the
“base two” part being optional. Enough about the nomenclature used to communicate binary
numbers, how to represent values in binary? Since binary is a positional numbering system,
N i
then apply the formula »"."  d; * b".

Binary to Decimal

The value of 1015 is interpreted as
1013 =12+ 0%2" +1%2° = 15410+ 0% 219 + 1 % 119 = 419 + 010 + 110 = 510

Application of the positional numbering formula to a binary number converts it into a
decimal number. As in the decimal case there are special names for two of the bits. The
leftmost bit is called the most significant bit (MSB) and the rightmost bit is called the least
significant bit (LSB). As a final example, convert 11012 to decimal.

123 4152240528 +1%2° = 158194+ 1419+ 0% 210+ 1% 119 = 819+ 410 + 010 + 110 = 1319

Decimal to Binary

In order to provide inputs to a digital system, real world values represented in decimal need
to be converted into binary. While there are several ways to perform this conversion, it makes
sense to adapt a familiar procedure, the binary to decimal conversion. The key idea is to rep-
resent the decimal number as the sum of distinct powers-of-two. To assist in this procedure,
use a power-of-two table.
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1 |01 }(213]4 |5 |6 7|8 ]9
2211124 |8]16 |32 |64 128 | 256 | 512

The power-of-two table lists the index ¢ and its value when raised as the exponent of 2. This
table is used in the following 3-step decimal to binary conversion procedure.

Step 1 Find the largest power of two less than or equal to the number to convert.

Step 2 Subtract this power of two from the number being converted. This is the remaining
number to convert.

Step 3 If the reminder is not equal to 0, go to step 1; otherwise stop.

The set of values found in Step 1 are the distinct powers-of-two that when added together
equal the number to be converted. The conversion is completed by putting the sum into the
positional numbering notation. The procedure is now applied to convert 131y into binary.

Step  Action
The largest power-of-two less than or equal to 13 is 8.
The remaining number to convert is 13-8=5.
The new remainder is not 0.
The largest power-of-two less than or equal to 5 is 4.
The remaining number to convert is 5-4=1.
The new remainder is not 0.
The largest power-of-two less than or equal to 1 is 1.
The remaining number to convert is 1-1=0.
The new remainder is 0 so the conversion is complete.

Thus, 1310 = 8 +4 + 1. This derivation can also be expressed in the positional numbering
notation as follows.

N = W~ W=

w

1310 =810+ 410+ 1lig=1%23+1%22+1%2°

At this point the “missing” powers of two are included in the summation by setting their
coefficients to 0. In the final step, all the coefficients are stripped off to form the binary number.
Continuing with the previous example,

1310 =1%22 +1% 22+ 0% 2" +1%2° = 1101,

Notice that this derivation is the exact reverse of the binary to decimal conversion shown
on page 2.

What range of values can be described by N bits? Clearly, the smallest number to be
represented is 0. To determine the largest number calculate how many different binary numbers
can be formed with N bits. Each bit can be written in two different ways, 0 or 1. Since these
choices are independent events, then the total number of possible outcomes is the product of
the individual events. Hence, the number of ways to arrange N bits is equal to 2% 2 % ... % 2
(N times) which is equal to 2. Thus, N bits can be arranged in 2% different ways. Since 0
is the smallest binary number then the maximum binary number is 2V — 1. The range of an
N-bit binary number can be represented as [0,2" — 1], where the [ and ] symbols mean that
values 0 and 2V — 1 are included in the range.
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Decimal | Binary | Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Table 1.1: The first 16 counting numbers represented in decimal, binary, and hexadecimal.

1.3 Hexadecimal

Hexadecimal is a base-16 numbering system where quantities are expressed using 16 symbols
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F}. The symbols {A...F} represent quantities just like
the symbols {0...9}. The symbol A represents the quantity 10, B 11, C' 12, D 13, F 14, and F
15. So if humans had adopted the hexadecimal numbering system instead of decimal you might
say to a friend, “I had A friends over for a party last night” meaning that 10 people showed
up. To show how hexadecimal is used as a shorthand for binary, consider the conversion of
hexadecimal numbers into binary.

Hexadecimal to Binary

To convert a number from hexadecimal to binary, unpack it. That is, each hexadecimal digit
is converted into a 4-bit binary representation. This conversion is possible because four bits
exactly represents every hexadecimal digit as shown in Table 1.1.

In order to convert 1DADg to binary, replace each hexadecimal digit with its binary
counterpart by consulting Table 1.1. For example 1DADs = 0001 1101 1010 11015. The
spaces between the binary numbers are included to make reading the number easier.

Binary to Hexadecimal

The above procedure can be reversed to convert binary numbers into hexadecimal. Group the
bits into sets of four, starting at the least significant bit, then convert each set of four bits into its
corresponding hexadecimal digit in Table 1.1. If there are not four digits in the most significant
grouping, then just add Os to make a grouping of three — that is pad the number with zeros.
For example, convert 11101010115 into hexadecimal. 11101010115 = 0011 1010 1011 = 3ABss.

To understand why this conversion works, consider the binary number 11101010115. Start
by writing down this number as the sum of powers of two, group the powers of two into sets
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of 4. The remaining steps are shown in the derivation below.

11101010115 =
12 + 1528 4127 4020 41 %2% 4 0x2% +1x23 4+ 0x22 142" 1420 =

280%2%3 4+0%22 41 %20 +1%20) 41241 %23 +0x22 +1x2 +0x29) +20x (1 %23 4022 1 %21 4120 =
28(00115) + 24(10103) + 20(10115) =

24*2(00115) + 24*1(10102) 4 24*0(10115) =

162(00112) 4 161(10102) + 16° * (10112) =

162(316) + 161 (A1) + 16° % (B1g) =

3AB1g

1.4 Binary Addition

The fact that the addition of binary numbers is similar to the addition of decimal numbers
should not come as a surprise as both are positional numbering systems. However, when
adding binary numbers with a digital system, it is possible that the result may exceed the
digital system’s capacity because the digital system can only accommodate a finite number
of bit positions. The number of bits to be simultaneously manipulated by a digital system is
refereed to as its word size . A digital system with a word size of N-bits can represent binary
numbers in the range [0, 2" —1].  Overflow occurs when a digital system is forced to represent
a value outside the range of its word size.

The process of adding binary numbers is exactly the same as adding decimal numbers:
Start in the LSB and work towards the MSB. Each of the bit-positions is called a bit-slice .
At each bit-slice, the two bits of the sum are added together along with the carry-in generated
in the previous bit-slice. This addition in a bit-slice will generate one bit of sum and possibly
one bit of carry to the next bit-slice. The addition of bits must be performed in base-2, hence
the results may look strange. For example, 15 + 13 = 102. In this case the sum-bit equals 0
and the carry-bit equals 1. Now, consider a more complex problem, adding 3 + 2 in binary,
assuming a word size of four bits.

3
+2
5 |
Notice, one of the additions produced a carry which is propagated to the next significant
bit position. The next example demonstrates an addition where the result is larger than the
word size can accommodate.

oo O
=o O =
[«

1
0
1

11 1 1 1
13 11 0 1
+7 0 1 1 1
20/1 0 1 0 0

The decimal result, 20, cannot be represented in four bits, hence the addition produced over-
flow. When adding binary numbers, overflow occurs whenever there is a carry-out from the
most significant bit-slice. That is, the result requires more bits than are available in the word
size.

After being introduced to binary numbering it might be tempting to look at all collections
of bits as being binary numbers. In truth, a collection of bits has no implicit meaning. The
sequence of bits, 0101, could just as easily represent the value 5 as it could represent the
intensity of red on a display. A collection of bits gets its meaning from the interpretation used.
When bits are used to represent integer quantities, two main interpretations, binary numbering
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and 2’s complement, predominate.

1.5 Negative Numbers

The binary numbering systems is often called an wunsigned numbering representation. The
term unsigned arises from the fact that there is no need to write a sign symbol in front of
a binary number because all binary numbers are positive — the positive sign is implicit. A
signed numbering representation, 2’s complement, is capable of representing both positive and
negative numbers.

Like binary numbering, 2’s-complement numbers exist within the confines of a word size.
One way to determine the 2’s-complement representation of a decimal number z, is to write
down the binary representation for the quantity 2V + z using N bits, where N is the word size.
For example, assuming a word size of four bits, determine the 2’s-complement representation
for 6. To do this, compute 2V +2 = 24 +6 = 164+ 6 = 22 = 101105. Taking the least significant
four bits yields 0110.

There are two points to note. First, this representation is the same as in binary numbering.
Second, the 2’s-complement value is written without a subscript 2, because it is not a binary
number. Now consider the 2’s-complement representation of a negative number.

Assuming a word size of four bits, determine the 2’s-complement representation for -6.
Compute 2V + 2 =2* —6 = 16 — 6 = 10 = 01010,. Taking the least significant four bits yields
1010.

To determine the decimal value of a 2’s-complement number, inspect its MSB. If the MSB
is 0, then the number is positive, hence can be interpreted as a binary number. If the MSB is
1, then 2V + 2 must be solved for 2. There is, however an easier way to approach this problem.

Negating a 2’s-complement number will mean changing the sign of the underlying decimal
representation. The negation of a 2’s-complement number, x, can be formed by flipping all the
bits of z and then adding 1. For example, take the complement of the 4-bit 2’s-complement
number x = 0110 which equals 6. Flipping all the bits of = yields 1001. Adding 1 to this yields
1010, which was previously shown to equal -6.

This technique aids in interpreting negative 2’s-complement numbers as follows. Given a
2’s-complement number that is negative, form its negation, convert that to decimal, then stick
a negative sign in front of the decimal representation. For example, determine the decimal
representation for the 4-bit 2’s-complement quantity 1010. Since the MSB is 1, this 2’s-
complement number represents a negative quantity. Flipping the bits, 0101, then adding
1, results in 0110. This is the representation for 6, so the original 2’s-complement number 1010
represent -6.

Figure 1.2 shows every combination of four bits and their associated 2’s-complement rep-
resentation.

Clearly, half of the numbers in Figure 1.2 have a leading 0 as their MSB, and are positive; 0
is considered a positive number. The other half of the numbers have their MSB equal to 1 and
are negative. Since 0 is considered a positive number, the largest negative number is 1 larger
than the largest positive number. Given a word size of N bits the range of 2’s-complement
numbers is [-2V 71 2N-1 1],

2’s-complement numbers are added in the same way that binary numbers are added as
shown in the following three problems.

1 1 1 1 1
6 0 1 1 0 3 0 0 1 1 6 0 1 1 0
+ -7 1 0 0 1 + -2 1 1 1 0 + 6 0 1 1 0
=-1 1 1 1 1 =1 0 0 0 1 =12 1 1 0 O
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0010

0011

2’s complement

word size=4 bits 0100

Figure 1.2: All possible combinations of four bits and their 2’s-complement interpretations.

The first example, 6 + —7, shows the addition process working correctly when the operands
have different signs. The other two problems illustrate the need for a new definition of overflow
for 2’s-complement numbers. The general rule for overflow in 2’s complement is, if the carry-in
and carry-out into and out from the MSB are not equal, then overflow has occurred. The
carry-out from the MSB is always thrown away. For example, the carry-in and carry-out of
the MSB in second problem are both 1, hence the result is valid. In the third problem, the
carry in to the MSB is 1 and the carry-out from the MSB is 0, hence overflow has occurred.
This result should not be a surprise because the expected result, 12, cannot be represented as
a 4-bit 2’s-complement number.

Taking the complement of a 2’s-complement number allows subtraction problems to be

converted into addition problems. For example, the subtraction problem 3 —2 can be rewritten
as 3+ (—2).

1 1 1
3 0 0 1 1 Becomes 3 0 0 1 1
- +2 0 0 1 O + -2 1 1 1 0
=1 0 0 0 1

Situations will arise which require increasing the number of bits required to represent a number
while retaining the value of the number. For example, imagine having a 4-bit binary number
that must be stored in a device that holds eight bits. How can this be done while preserving
the magnitude of the number? For binary numbers, the answer is easy, add 4 leading zeros,
an operation called padding with 0Os.

For 2’s-complement numbers this solution will not work. For example, consider the 4-bit
2’s-complement representation for -1 (1111) that needs to be store in a 8-bit device. Adding
4 leading 0s will change the value of the number to 00001111, the value 15. The solution, in
this case, is to pad with 1s, yielding 11111111, which represents -1 in 8-bit 2’s complement.
As with the binary numbering example, positive 2’s-complement numbers can be padded with
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8-bit 2’s complement

1110=-2 11111110=-2
1010=-6 11111110=-6
1000=-8 11111000=-8
0011=3 00000011=3
0111="7 00000111=7

Table 1.2: Five examples showing how to sign-extend a 4-bit 2’s-complement number.

0s and still retain their value. The general rule for padding in 2’s complement is called sign
extension; and involves copying the MSB to fill in the needed space. Table 1.2 shows five
examples of sign extension on 2-bit 2’s-complement numbers.
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1.6 Exercises

1. (1 pt. each) Syllabus:

a) What is the late penalty for homework?
b

)

) True or False: Calculators can be used during exams.
c¢) True of False: University ID is required during exams.
)
)

d) What is my thesis regarding grades?

e) Bob L. Student has the following grades. Determine his final overall course percent-
age and grade.

Component | Percentage

Homework | 60%
Exam 1 90%
Exam 2 80%
Final 70%

f) How should you prepare for the 43"¢ lecture?

2. (1 pt. each) Convert the following numbers to decimal. Show work, or receive 1/2

credit.
a) 1002
b) 1000
¢) 100009
d) 1000004
e) 111111,
f) 10001001010001015
g) 3EAq

3. (1 pt. each) Convert the following number to binary. Show work, or receive 1/2 credit.
a) 4416
b) 4410
¢) 102310

4. (1 pt. each) Convert the following number to hex. Show work, or receive 1/2 credit.
a) 1010111014
b) 7710

5. (2 pts. each) Toughies:
a) Convert 1235 to base-12

b) Convert 789;2 to base-5

c) What is the largest base-10 quantity that can be represented using 5 digits in base
127

6. (1 pt. each) Perform the following additions, assume a word size of four bits. Determine
if overflow occurs.
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01104 + 0101,
00102 + 01104
01115 4 00119
00102 + 0101,
00102 + 10102
01015 + 1011,
00115 + 1001,

CHAPTER 1. NUMBERING SYSTEMS



Chapter 2

Representations of Logical Functions

A digital system starts its life deep inside an engineer’s mind. In the beginning it is an abstract
device; its very far removed from reality. In order to realize the digital system, the engineer
undertakes the design process; a series of refinements to bring the digital system closer and
closer to a real working system. This iterative approach is necessary in complex designs because
going straight to a final implementation is overwhelming, error-prone, difficult to modify, and
difficult to debug and test. The goal in breaking the design process into steps is to allow the
proper specification of the digital system using a “language” which is easy to understand and
modify, and then to show how to implement this specification using real circuit elements.

Four refinements in the design of digital systems are considered. Each of these refinements
define the input, output, and behavior of the digital system.

Word Statement - A written description of the expected input, output, and behavior of the
digital system.

Truth Table - A listing of every possible input to the digital system and the corresponding
output.

Symbolic - A symbolic (math-like) description of the output(s) as a function of the input
variable(s).

Circuit Diagram - A pictorial representation of the physical interconnections of the circuit
elements.

When designing a digital system each of these representations should describe the same
system, just in different ways. The most abstract representation of a digital system is the word
statement. Word statements are notoriously ambiguous and have no standardized structure.
However, these shortcomings are the strengths of this representation. The great expressibility
of language allows very complex processes to be captured in brief statements. Hence, ideas
can be quickly refined without having to expend much engineering effort. Also, because word
statements have no prescribed form, there is a great deal of flexibility in structuring a word
statements. Because of its potential ambiguity and unclear boundaries, the word statement’s
step in the design process diagram shown in Figure 2.1 is drawn inside a puffy cloud.

11
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Most Abstract Most Real

Circuit

Word

Truth Symbolic
Statement

Table Diagram

Figure 2.1: The steps in the design of a digital system.

Each of the four design stages shown in Figure 2.1 is a description of a digital system. The
arrows in Figure 2.1 are transformations described in this chapter.

After the word statement, all subsequent stages of the design process are unambiguous,
they have one clearly understood interpretation. The first refinement of a word statement is
a truth table. The truth table strikingly illustrates the difference between digital and analog
circuits. When working with analog phenomena, like the AC voltage from a wall outlet, it
is impossible to list all possible values of the voltage, because an infinite number of potential
values exists. However, when working with digital phenomena, each signal can have only one of
two possible values, making it quite easy to enumerate them all. When working with a digital
system with three bits of inputs, like that shown in Figure 1.1, there are only eight different
combinations of the inputs. For each of these input combinations, a truth table specifies what
the output should be.

The symbolic form is a set of equations written in Boolean Algebra. These equations
look similar to those encountered in an algebra class. However, instead of operations like
addition and multiplication, Boolean Algebra uses the operations AND, OR, and NOT. These
operations have hardware counterparts - real physical circuits which “compute” their values. A
circuit diagram shows how these hardware components are interconnected to realize the digital
system. As real devices, these circuits represent the bit values, 0 and 1 as voltages. Typically,
logic 1 is represented by a high voltage level (5v) and logic 0 is represented by a low voltage
level (Ov).

This text takes a bottom-up approach in designing digital systems. The design process
starts with the most fundamental digital hardware components and shows how they are inter-
connected to form basic building blocks. These building blocks are then arranged into datapath
and control circuit. Thus, all the digital circuits studies in this text will be built from a small
pallet of fundamental digital hardware components, called the elementary logical functions.

2.1 Elementary Logical Functions

Elementary logical functions get their name because they are the fundamental (elementary)
building blocks of digital design, they use the logical operators like AND, OR, and NOT (logi-
cal), and they describe a transformation (function) from input to output. For each elementary
logical function, its word statement, truth table, symbolic and circuit diagram are presented.
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AND

Word Statement

AND is a logical function with two inputs and one output. The
output equals 1 only when all the inputs are equal to 1, otherwise
the output equals 0.

Symbolic A*B
A B[ A*B
01]0 0
Truth Table 01 0
110 0
1|1 1

Circuit Diagram

OR

Word Statement

OR is a logical function with two inputs and one output. The
output equals 1 when any input is equal to 1, otherwise the output

equals 0.
Symbolic A+B
A[B[AB
00 0
Truth Table 01 1
110 1
111 1

Circuit Diagram

v

NOT

Word Statement

NOT is a logical function with one input and one output. The
output is not equal to the input.

Symbolic

Truth Table

A’
Al A
0 1
1 0

Circuit Diagram

NAND

Word Statement

NAND is a logical function with two inputs and one output. The
output equals 1 when any input is equal to 0, otherwise the output
equals 0.

Symbolic (A*B)’
A B ] (A*By
01]0 1
Truth Table 01 1
110 1
1|1 0

Circuit Diagram
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NOR is a logical function with two inputs and one output. The
Word Statement output equals 0 when any input is equal to 1, otherwise the output

equals 0.
Symbolic (A+BY)
o A B[ (A+B)
®, 010 1
.
Truth Table 011 0
110 0
1 1 0

Circuit Diagram

XOR is a logical function with two inputs and one output. The
Word Statement output equals 1 when the inputs are different, otherwise the out-
put is equal to 0.

Symbolic A® B

A[B[AGD

XOR

Truth Table

k=l E=]Res
ol || ol P

0
1
1

Circuit Diagram

The physical elements for the elementary logical functions are typically called gates. Thus,
the physical circuit for the AND logical function is called an AND gate.

The AND/OR functions can be enlarged to handle more than two inputs because their
word statements use words ALL/ANY respectively. Thus a 4-input AND gate will output 1
only when all four inputs equal 1. The circuit diagram for this AND gate would look just like
a 2-input AND gate with two additional inputs.

2.2 Conversion Between Representations

Figure 2.2 shows the four representations of a digital system along with the different trans-
formations covered in this section. The arrows are numbered by the process in which the
transformation is covered. The design process shown in Figure 2.2 is captured in Steps 7, 6,
and 4. The other transformations introduced in this section enable designs to be optimized as
well as to explore the relationships between the representations.

2.3 Circuit Diagram to Truth Table

The first transformation is the circuit diagram to truth table. Where the circuit diagram came
from is unimportant for now. Figure 2.3 is a circuit diagram with three bits of input labeled
A, B, C and one bit of output F (A, B,C) that will be transformed into a truth table.

Before starting with the transformation there are some important observations to make
about Figure 2.3.
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/7 Truth Table \

1
Word Statement Symbolic O
(Cll‘CU.l‘[ Dlagramj /

Figure 2.2: The four representations of a logical function. The numbered arrows are the
transformations examined in this chapter.

A B C

LS~F(A,B,0)
=z

L ULH

Figure 2.3: A simple 3-input, 1-output circuit.

1. The gates in a circuit may have different numbers of inputs. For example, this circuit
contains two AND gates with two bits of input and an AND gate with three bits of input.

2. The lines drawn in the figure represent physical wire.

3. When a voltage is applied to one end of the wire by an external source or by one of the
gates, it is assumed to propagate instantaneously to all points on the wire.

4. The black dots on intersecting wires means that the two wires are connected. For exam-
ple, the vertical wire labeled “A” is connected to the second and third AND gates.

5. Wires that cross one another and do not have a dot are assumed not to be connected.
For example, the C signal does not go into the second AND gates.

6. Outputs are never connected directly together, because they could create a short-circuit
destroying the participating gates.

7. Inputs are always tied to some signal source, usually the output of a gate.
8. A gate output may drive the inputs of many different gates.

Since the three external inputs in Figure 2.3 do not have sources shown, they must be
provided by some external user. The output from a gate can provide input to multiple, different
inputs. For example, the output of the NOT gate associated with the C' input feeds the first
and third AND gates.
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Process 2.1: Circuit Diagram to Truth Table

To lend context to the discussion of the conversion process, let’s describe this process by
converting the circuit diagram in Figure 2.3 into a truth table.

Step 1: Identify the inputs and outputs of the circuit diagram. Any wire
which is not being driven by some source is an input and any output which is not driving
a source is an output. In the case of Figure 2.3, A, B, C are inputs and F(A, B,C) is an
output.

Step 2: Build the shell of the truth table to hold the solution. Remember
that, “A truth table is a listing of every possible input to the digital system and the
corresponding output.” For example A =1, B =0 and C' = 1 is a possible input to the
circuit. All the potential inputs to the circuit could be listed in a ad-hoc manner, but a
much more organized approach is shown below.

A|B|C| F(AB,C)

[l i ol o) Hen) Hanl Nan)
[l B K=l K=l il el K=l N =)
OO OO

1

Two good reasons drive this choice of row ordering. First, the columns of the truth
table have a strong pattern. The bits of the C-variable column repeat from top to bottom,
0101 .... The bits of the B-variable column repeat from top to bottom, two Os followed by
two 1s. The bits of the A-variable column repeat from top to bottom, four Os followed by
four 1s. Using this pattern makes filling a truth table easier. Second, when the A, B,C
variables in each row are interpreted as a 3-bit binary number, they form consecutive
integers. This approach makes finding a particular input/output much easier.

Step 3: Determine the values in the output column. In order to do this each
input is applied, one at a time, to the circuit and determine the output of the circuit.
This step is also referred to as evaluating the output of the circuit.

Imagine that the bits are flowing down hill from the inputs to the outputs. A gate
computes its output only when the values of all its inputs are known. The output of a
gate is determined from the truth tables given on pages 12 through 14. For example, in
Figure 2.4A, the input A = B = C' = 0 is applied to the input. The third AND gate
cannot compute its output until it receives the output from the NOT gate associated
with the C input. The outputs from each gate are shown on the signals in Figure 2.4B.
Due to size constraints, the AND gate inputs are written inside the gate.
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F(0,0,0)

L

A B
Figure 2.4: A) The circuit diagram from Figure 2.3 with input A = B=C = 0. B)
The effect of this input shown on the wires.

Figures 2.3 and 2.4 illustrate a subtle notational convention. Why is the output of
the circuit shown in Figure 2.3 labeled F(A, B,C) and in Figure 2.4A this same output
is labeled F(0,0,0)? It is because the variables A, B,C in F (A, B,C) are placeholders
for the actual values of the variables. Since these variables are given the values A, B, C =
0,0,0 in Figure 2.4A; this notational change is acknowledged by labeling the output
F(0,0,0).

Since Figure 2.4B shows that F(0,0,0) = 0, then a 0 is placed in the top row of the
truth table for this function. The remaining seven rows of the truth table are computed
using this same method. The resulting truth table is shown below.

A|B|C| F(ABC)

000 0
0|01 0
0|10 1
0|11 0
110]0 1
1701 1
17110 1
17111 0

While this transformation provides an excellent introduction to a variety of important
concepts, it is not a practical way to derive the truth table entries. First, it is tedious because
the same process must be performed eight times. Second, it is prone to errors because the bits
on the figure must be overwritten seven times, once for every row of the table. It turns out
that determining the symbolic form for this circuit’s output and then determining the truth
table is a much less tedious and less error-prone method to determine the truth table from a
circuit diagram.

2.4 Circuit Diagram to Symbolic
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Process 2.2: Circuit Diagram to Symbolic

The transformation of a circuit diagram into a symbolic expression is very similar to
evaluating the output of the circuit, except symbols instead of bits flow through the
circuit. To lend context to the discussion of the conversion process, let’s describe this
process by converting the circuit diagram in Figure 2.5into a symbolic form.

Step 1: Identify the inputs and outputs of the circuit diagram. See Step 1
of Process 1.

Step 2: Build the shell of the truth table to hold the solution. See Step of
Process 1.

Step 3: Determine the values in the output column. The symbolic output of
a gate is written out only when symbolic inputs are present on all of the gate’s input. The
output of a gate is determined from the symbolic forms given on pages 12 and 14. For
example, in order to determine the output of the AND gates in Figure 2.5A, the symbolic
outputs of the NOT gates must first be determined. These are A’, B’,C’ as shown in
Figure 2.5B. Since the inputs to the top AND gate are A’ and B, the output of the AND
gate is labeled A’ B. The output was not labeled “A’*B” because the “*” is often dropped
from the symbolic expressions involving AND in order to save space. This is similar to
the convention of dropping the “*” symbol when it is used as the multiplication operator
in regular algebra. When two Boolean variables appear next to one another it is assumed
that they are ANDed together. After labeling the output of the other AND gate, the
output of the OR gate is labeled A’B + AB’C’ as shown in Figure 2.5B.

| AB  ABIABC

AB’C’

A B
: A) A circuit diagram. B) The input variables propagated through to the
output.

Figure 2.5

It was earlier suggested that in order to determine the truth table for a circuit diagram,
it is easier to first determine the symbolic form for the circuit diagram, and then determine
the truth table from this symbolic form. Determining the symbolic form of a circuit’s output
is eight times easier than determining all eight rows of the truth table. The next section will
show how to transform a symbolic form into a truth table.

2.5 Symbolic to Truth Table

Before we get started with this transformation you will need to understand and apply the
concept of evaluation.

Evaluation is the process of substituting each variable’s value into the equation and applying
the operators to the values. For example, evaluate F(A, B) = (A + B)’ for (A,B) = (0,1).
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Substituting in the values for the variables yields F(0,1) = (04+1)’. Applying the OR operation
to 0 and 1 gives the result 1. Applying the NOT operator to the result of the OR operator
yields 0. Thus, F'(A, B) evaluated at (4, B) = (0,1) equals 0. In other words, F'(0,1) = 0. The
evaluation of more complex expressions requires you to apply the rules of operator precedence
in Boolean Algebra.

Operator precedence specifies the order in which the operations of an expression are eval-
uated. Operations with higher precedence are performed before operations with lower prece-
dence. The rules of operator precedence are listed for both algebras in the following table.

‘ Regular Algebra ‘ Boolean Algebra
High precedence | Parenthesis Parenthesis
Exponents Not

Multiplication/Division | And
Low precedence | Addition/Subtraction Or

For example, if you given the Boolean function F(A,B,C,D) = (A + B(C’ + D))’ and asked
to evaluate F'(0,1,0,0) you would first substitute the values of the variables into the expression.
To do this look at the left to right order of the Boolean variables in the F'(A, B, C, D) expression
and match them to the left to right order of the bit values in F(0,1,0,0). Thus everywhere
you see a A you will substitute the value 0. B will get replaced with 1, C with 0 and D with
0. This will produce the expression:

(0+1(0" +0))

You need to apply operator precedence to determine which operation to perform first.
Since parenthesis are the highest precedence operation, we to “look” inside the outer most
parenthesis and evaluate:

0+ 1(0"+0)
Since parenthesis are the highest precedence operator, we must evaluate what is inside the
parenthesis first:
0'+0
Since NOT has a higher precedence than OR, we perform the NOT before performing OR.
0+0=1

We then go back and put this value into expression where the original parenthesis expres-
sion. This gives us

0+1x1
Since AND has a higher precedence than OR, we get

0+1x1=1
Substituting this value into expression where the original parenthesis expression gives us:
1"=0

Thus, £(0,1,0,0) = 0
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Process 2.3: Symbolic to Truth Table

To lend context to the discussion of the conversion process, let’s describe this process by
converting the symbolic expression F(A, B,C) = A'B + AB’C’ into a truth table.

Step 1: Identify the inputs and outputs of the circuit diagram. Like the
transformation of a circuit diagram to a truth table, the first step in this transformation
is to identify the inputs and outputs of the circuit. Normally, the variable on the left-hand
side of the equal sign in an equation is the output and any variables which appear on the
right-hand side are inputs. In the symbolic expression FI(A, B,C) = A’B + AB'C’, F is
the output and A, B, C are the inputs.

Step 2: Build the shell of the truth table to hold the solution. Write down
the shell of the truth table using the ordering given on page 16. The basic structure of
the truth table is the same no matter how many variables the symbolic expression has.
For example, if a symbolic expression has four input variables A, B, C, D, then start by
listing the variables across the top of the truth table. Then write the bit values for the D
variable by alternating 0 and 1 on every row, from top to bottom. The C variable would
alternate every other row, from top to bottom. The B variable every fourth row, and
the A variable every eighth row. The resulting truth table has 16 rows. This should not
come as a surprise since, from page 3, there are 2* = 16 different combinations of four
input bits.

Step 3: Evaluate the symbolic expression for each combination of inputs.

We will evaluate F(A, B,C) = A'B+ AB'C’ for every combination of (A, B, C') Let’s
start with the first row of the truth table and determine F'(0,0,0) by substituting 0, 0,0
for every occurrence of A, B, C in the symbolic expression. This yields 0/ x0+ 0% 0" % 0’.
In order to evaluate this expression, perform the highest precedence operator first. In
this case, evaluate the three NOTs yielding, 1 %0+ 0x* 1% 1. The next highest precedence
operator is AND, evaluating the two ANDs in the expression yields, 0 + 0. Evaluating
the remaining OR yields 0. Hence, F(0,0,0) = 0. Now continue this process for the
remaining 7 row to produce the finished truth table.

A|B|C| F(AB,C)

=== Ool oo O
[l B K=l K=l il el K=l K =)
| OO OO
(o] Nesl Neo) il WY B Nan) Nan)

This process of evaluating the function for large numbers of inputs is tedious and error
prone. In order to make good on the promise to produce an efficient transformation of a
circuit diagram to a truth table, a better method is needed to complete the truth table from
the symbolic form.

Two conditions make evaluating a symbolic expression difficult: its size and the evaluation
process itself. Each difficulty will be addressed in turn. Instead of treating the symbolic
expression as a single monolithic entity, break the expression into smaller subexpressions,
evaluate each subexpression for all the inputs, and then put the values of the subexpressions
back together. Three criteria govern the decomposition of an expression into subexpressions.
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First, break the the expression into as few pieces as possible. Second, break the expression
into subexpressions which are easy to put back together. Third, break the expression into
subexpressions which are easy to evaluate.

For example, look at the expression A’B + AB’C’. This expression splits nicely into two
subexpressions A’ B and AB’C’. This division meets the three criteria, only two subexpressions
are defined, the subexpressions can be put back together by ORing them, and, as shown next,
there is a simple way to evaluate the two subexpression.

In order to efficiently evaluate an expression for all of the rows of a truth table the number
of questions asked about the expression must be reduced. This can be done for product terms.
A product term is a group of variables (or variables negated) which are ANDed together. For
example, A'B and AB’C’ are both product terms. Instead of evaluating a product term for
each row of a truth table, ask, “what input(s) cause the product term to evaluate to 1?” Since
AND evaluates to 1 when all its inputs are 1, identify the rows of the truth table where the
inputs equal 1. For example the product term AB’C’ evaluates to 1 only when A =1, B =0,
and C' = 0. Note, the B and C variables are negated in the product term so the variable must
equal 0, so that its negation equals 1 before being ANDed. On the row (A, B,C) = (1,0,0)
the product term AB’C’ equals 1. What does the product term equal for all the other rows of
the truth table? Since the product term does not equal 1 for these rows, the only alternative is
for it to equal 0. Consequently, the remaining seven rows of the truth table equal 0 as shown
in Table 2.1.

A|B|C||AB|ABC' || F(A B,C)
ojoJo] o 0 0
ojoj1] o 0 0
oj1]o] 1 0 1
o1 ]1] 1 0 1
L{[ofJo] o 1 1
L[o[1] 0 0 0
L[1]0] 0 0 0
L[1]1] o 0 0

Table 2.1: The truth table for F(A, B,C) = A'B + AB’C" and its two subexpressions.

What inputs cause the product term A’B to equal 1?7 Clearly, A = 0 and B = 1. While
filling out the truth table for this product term there may be some confusion how to handle
the C' variable. Since the C' variable is not present in the product term then its value is
irrelevant. Consequently, the product term A’B evaluates to 1 for (4, B,C) = (0,1,0) and
(A,B,C) =(0,1,1), and evaluates to 0 for all other inputs as shown in Table 2.1.

Finally, combine these two subexpressions and compute the value of the function F'(A, B,C) =
A’B + AB'C’ for all rows of the truth table. In order to do this, look at each row of the truth
table and ORing the value of the two subexpressions together. Since OR evaluates to 1 when
any of its inputs equals 1, then it suffices to look for rows where either of the two subexpressions
equal 1 and put a 1 for the output for F'. All other rows will equal 0. The result is shown in
Table 2.1.

The words realize and implement are used somewhat interchangeably to mean executing
the design process in order to build a circuit — to make the digital system real. Since this text
focuses on the logical behavior of circuits, not their physical behavior, the design process ends
with a circuit diagram, see Figure 2.2. In general, when asked to realize or implement a circuit
make it as real as possible. Along similar lines, the realization or implementation of a circuit is
its physical manifestation. In order to answer questions about a digital systems realization or
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implementation, reason about the behavior of its physical implementation. In the next section
the last step in the realization of of digital systems, symbolic to circuit diagram, is examined.

Process 2.4: Symbolic to Circuit Diagram

The transformation of a symbolic expression into a circuit diagram is a recursive journey
from the output to the input parsing the expressions along the way. To (loosely) para-
phrasing Meriam Webster, parsing is the process of dividing an expression into subex-
pressions and identifying the relationship between the expression and subexpresions. An
expression is a collection of boolean variables connected properly to one another by ele-
mentary logical functions.

To lend context to the discussion of the conversion process, let’s parse F(A, B,C) =
Ax (B+ C'")+ B'C into a circuit diagram.

Step 1: Indentify the lowest precedence operator in the expression. When
a symbolic expression is evaluated, some operation is always performed last, yielding the
single-bit output of the function. This operation is the lowest precedence operator of the
expression. In the expression for F'(A4, B, C), the lowest precedence operation is the OR
between the subexpressions A x (B + C’) and B'C.

Step 2: Draw the gate of the lowest precedence operator in the expression.
This pretty simple, we draw the OR gate, labeled “1” in Figure 2.6.

Step 3: Connect the lowest precedence operator’s output to the parent.
Paraphrasing Mariam Webster, a parent is an entity from which other subordinates (chil-
dren) arise.

In this parsing process a parent expression is broken down into zero or more child
expressions in Step 2 by removing gate from the parent expression.

In this example we started Step 1 by parsing F'(A, B, C) so this is the parent expres-
sion. So we will connect the output of the OR gate we removed from the circuit in Step
2 to F(A, B,C)

Step 4: Remove the lowest precedence operation from the expression
creating zero or more child subexpressions. Removing the OR operator from
Ax (B + C") + B'C yields two subexpressions, A x (B + C'), and B'C.

Step 5: Parse each child subexpression independently. Each of the subexpres-
sions created in Step 4 need to be parsed independently. This means that we must parse
A% (B+C"), and B’C. This means that we will use A% (B+C") as the starting expression
at Step 1. The output of the (child) expression A x (B + C’) is an input to the parent
expression of Ax(B+C") which is OR gate formed when we parsed Ax(B+C")+B'C. We
now proceed to complete the parsing process below starting with the two subexpression
Ax(B+ (') and B'C.


https://www.merriam-webster.com/dictionary/parse
https://merriam-webster.com/dictionary/parent
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Step 1: The lowest precedence
operation in this expression,
AND between A and (B + C").

Step 1: The lowest precedence
operation in this expression,
AND between B’ and C.

Step 2: Draw the AND gate
labeled 2 in Figure 2.6.

Step 2: Draw the AND gate
labeled 5 in Figure 2.6.

Step 3: Connect the output
of AND gate labeled 2 to the input
of the OR gate labeled 1.

Step 3: Connect the output of
AND gate labeled 5 to the input of
the OR gate labeled 1.

Step 4: Remove the AND from
A x (B + C") producing two child
subexpressions A and (B + C”).

Step 4: Remove the AND from
B’C producing two child
subexpressions B’ and C.
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leaf 1: OR B+’ 1: NOT B’ leaf
2: OR gate 3 2: NOT gate 6
3: Connect 3 to 2 g: Clomuast § it
4: B and C’ 4: B
leaf 1: NOT ¢’ leaf
2: NOT gate 4
3: Connect 4 to 3
4. C
leaf

A J B ch
‘ I »—%l_ > F(A.B.C)

e—s)

Figure 2.6: The circuit diagram for F(A,B,C) = A(B+ C') + B'C.

Two simplification were made during the parsing process which deserve some attention
leaves and parenthesis. When there the parsing process can go no further, there are no more
operators in the expression, that expression is called a leaf . Examples of leafs include input
variables and logic 0 and logic 1. You can think of these as leaves on a metaphorical parse
tree.

Parenthesis are special operators which have no circuit representations. They allow us
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a notation that enables low precedence operators to be evaluated before higher precedence
operators. consequently, when an expression consists of a single set of parenthesis containing
a expression, the parenthesis can be removed and parsing resumed with the expression.

During the parsing process, it is critically important to keep track of which parts of the
expressions have been parsed and which have not. To do this, add lines under each of the
subexpressions as they are created. After correctly parsing the expression, each variable should
have a little line underneath it. This parsing-management can be a dizzying process jumping
between different levels of the parsing process to resume parsing pieces of the expression left
unrealized.

2.6 Symbolic to Symbolic

The laws of “regular” algebra are used to discover relationships between expressions, and to
manipulate expressions into more convenient forms. Boolean Algebra has a set of laws which
can be employed to manipulate symbolic expressions. The nine laws of Boolean Algebra are
listed in Table 2.2.

Law Primary Dual
1. x+0=x x*1=x
2. x+1=1 x*0=0
3. X+x=x x¥*x=x
4. X7 =x
5. x+x'=1 x*x'=0
6. X+y=y+x x*y=y*x
7. | xt(ytz)=(xty)+z xX*(y*z)=(x*y)*z
8. x*(y+z)=x*y+x*z | x+(y*z)=(x+y)*(x+2)
9. (x+y)'=x"*y’ x*y)=x"+y’

Table 2.2: The laws of Boolean Algebra using the Boolean variables x, y, x.

Notice that all laws (except Number 4) have a dual. A dual of a symbolic expression is
formed by swapping all ANDs and ORs and all 0s and 1s. Boolean Algebra expresses the
duality principle: If a statement S is true, then the dual of S is also true. Later, it will be
convenient to identify which law is used to manipulate a symbolic expression. In these cases,
write down the law’s number followed by D if it is a dual. For example, if the property zxx = =
is used to manipulate a symbolic expression, then indicate that Law 3D was used to manipulate
the symbolic expression.

The laws in Table 2.2 can be verified as true by plugging in every possible combination of
bits and checking if the two sides of the equation are equal. For example, to check Law 3D,
set x = 0, yielding 0 * 0 = 0 which is true, and then set x = 1 and verify that 1x1 = 1.

The laws of Boolean Algebra can be used to prove two symbolic expressions are equal. This
proof is performed by manipulating one of the expressions until it exactly equals the other side.
For example, to prove that A + A’B’ = A + B’, transform the more complex expression into
the simpler expression. In the example, A + A’B’ is the more complex expression and A + B’
is the simpler expression. At each step of the transformation provide the law used to yield the
next step.
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A+ A'B = Law 8D
(A+A)*x(A+B)= Law5)
1x(A+B') = Law 1D
A+ DB

Working on these derivations is a little like solving a maze or playing a good game of chess.
Both require a player to “look ahead” and see what the implications of a decision will be. Not
looking far enough ahead may result in arriving at one of the preceding steps. For example,
consider what happened in the following loopy-derivation of A(A + B) = A. The correct
derivation is shown on the right.

Loopy Correct

A(A+ B) = Law 8 A(A+ B) = Law 8

AA+ AB = Law 3D | Ax A+ AxB= Law 3

A+ AB = Law 8D | A+ Ax B Law 1D

(A+A)(A+B)= Law3 Ax1+AxB Law 8

A(A+ B) huh? A(l+ B) Law 2
A(1) Law 1D
A

Process 2.5: Expansion Trick

The expansion trick can be used to show that two expressions are equal to one another.
To do this we will make the expression on the left-hand side (LHS) of the “=" sign equal
to the expression on the right-hand side (RHS).

To lend context to the discussion of the expansion trick process, let’s prove the fol-
lowing.

B'+ A'(B'C+C) = (AB + BC"Y (2.1)

Step 1: Convert the LHS and RHS expressions into SOP form. The LHS
has a single set of parenthesis, so we distribute the A’ term to each term inside the
parenthesis. We leave the B’ term alone because it is already in a (degenerate) SOP
form. Thus we are left with the SOP expression

B + AB'C+ AC

The RHS is more difficult because we will have to “distribute” the negation outside
the parenthesis using Law 9 using the following sequence of steps.

(AB + BC"Y Law 9
(ABY(BC") = Law 9D
(A" + B')(B' +C") = Law 4
(A" + B')(B' +C) = Law 8

(A+B")B'+ (A +B')C = Law 8
A'B'+ B'B'+ AC+ B'C= Law 3
A'B'"+B' + A'C+B'C

Thus after this step our original proof now looks like:

B +AB'C+AC=A'B +B +AC+BC (2.2)
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Step 2: Identify the missing variables for each product term. A couple of
definitions are needed to understand the term “missing variable”

e Working Set The set of variables in an expression. The working set in our
example is A, B, C.

e Canonical Product Term A product term that contains all the variables (or
their negation) in the working set. For example, the product term A’B’C on the LHS is
a canonical product term.

e Missing variable The set of variable, that when ANDed to non-complete product
term, makes the product term canonical. For example, the missing variable for the
product term B’ are A and C.

Putting all this together we get:

Term | Missing variable(s)
B’ A and C

A'B'C | None

A'C B

A'B’ C

B’ A and C

A'C B

B'C A

Step 3: AND the missing variable and its complement to each product
term. This step relies on Law 5 and La 1D from Boolean Algebra. Let’s see how this
work for the product term A’C on the LHS.

Law 1D of Boolean Algebra states that X x1 = X. Since the equality sign, works
both ways, we could also say that Law 1D of Boolean Algebra states that X = X x 1. In
our case we will let X be the term A’C. Applying Law 1D, we have A'C = A’C * 1.

Law 5 of Boolean Algebra states that X + X’ = 1. We could also interpret this as
saying that 1 = X + X’ In this case we will let X be the missing variable B. So we have
1=B+ B

Combining these two ideas together, we get that A'C =1+ A'C = (B + B)A'C =
A'BC + A’B'C The table below shows how each term is converted when its missing
variable(s) are inserted.

“_»

Missing vari- | Add missing vari- .
Term snle(s) able Expand expression
AB'C + AB'C'" +
!/ ! ! !
B A and C B'(A+ A (C+C) ANBC+ ABC
A’B'C' | None
A'C B A'C(B+ B') A'BC + A’B'C
A'B’ C A'B'(C + ") A'B'C+ A'B'C’
AB'C + AB'C'" +
!/ ! / /
B A and C B'(A+ A (C+C") ANB'C+ ABC
A'C B A'C(B+ B') A'BC + A'B'C
B'C A B'C(A+ A7) AB'C + A'B'C

Substituting these expanded expressions into Equation 2.2, we get a the rather long
expression shown below.
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AB'C+ AB'C'+ A'B'C+ AB'C'+ AAB'C+ ABC + A'B'C =
A'B'C+A'B'C'+AB'C+AB'C'+A'B'C+A'B'C'+A'BC+A'B'C+AB'C+A'B'C
(2.3)

Step 4: Remove redundant product terms from each side. This step relies
on Law 3 of Boolean Algebra which states that X + X = X. In our case, X will be a
product term that is repeated on the LHS or RHS. For example the product term A’B'C
is repeated on the LHS as the 37¢ and 5" terms. We could rearrange the terms on the
LHS to look like A’B'C + A’B’C. Law 3 tells us that A’B'C + A’B'C = A’B’C. This
may be unintuitive because in regular algebra x + x = 2z. But then again, in regular
algebra “4” means addition not logical OR and regular algebra has the symbol 2 while
Boolean Algebra has 0 and 1. Using Law 3 on both the LHS and RHS sides yields:

AB'C + AB'C' + A’B'C + A'B'C' + A'BC =
A'B'C+ A'B'C' + AB'C + AB'C' + A'BC  (2.4)

Step 5: Rearrange the terms so that LHS and RHS have the same order.
This step relies on Law 6 of Boolean algebra which states that X +Y =Y + X. In our
context X and Y are the term in the LHS and RHS. It is a good idea to leave the terms
on the LHS alone and move the terms on the RHS to get the same order. This let’s you
check that you have in fact the same terms on both side and have not made an error in
your derivation.

AB'C+ AB'C' + A'B'C+ A'B'C' + A'BC =
AB'C+ AB'C' + A'B'C+ A'B'C' + AABC  (2.5)

Step 6: Write out the proof. A formal proof requires us to manipulate one side
of the equality into the other using the proper laws of Boolean algebra. The way that we
will accomplish this is to transform the LHS of Equation 2.1 into the LHS of Equation 2.5
using the first 5 steps of this process. You then continue the derivation starting with the
RHS of Equation 2.5 and proceed back up the process steps to the RHS of Equation 2.1.

27
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B'+ A(B'C+C) = Law 8
B' +A'B'C+AC = Law 1D
B'x1x1+A'B'C+ A'1C = Law 5
(A+ A)B'(C+C")+A'BC+A'(B+B')= Law 8
AB'C+ AB'C' + A’B'C+ A'B'C' + A’B'C + A'BC + A'B'C = Law 3
AB'C + AB'C' + A'B'C + A’B'C' + A’BC = Law 6
A'B'C+ A'B'C'+ AB'C + AB'C' + A’BC = Law 3
A'B'C+ A'B'C' + AB'C + AB'C' + A’B'C + A’/B'C' + A’ BC+
A'B'C+ AB'C+ A'B'C = Law 8
'B(C+C")+B(A+A)(C+C")+ACB+B)+BCA+A)= Law5b
AB 14+ B x1x14+AC*x1+B'Cx1= Law 1
AB +B +AC+ B'C = Law 3D
A'B'+ B'B'+ A'C+ B'C = Law 3
A'B'+B'B'"+ AC+ B'C = Law 8
B'(A'+B)+C(A +B') = Law 8
(A + BB +0) = Law 9
(A"B) (B"C"Y = Law 9D
(AB)(BC"Y = Law 9
(AB + BC"Y Q.E.D.

The expansion trick runs into problems when there are a large number of terms in paren-
thesis. With a large number of terms in parenthesis, the distribution process becomes tedious
and error prone. The following derivation utilizes Laws 4 and 9 to avoid this problem.

Show: (A+ B)(A'+B)(B+C)=B

Derivation:

(A+B)(A'+B)(B+C) = Law 4
[(A+B)(A' +B)(B+C)" = Law 9D
(A+B) + (A +B)+(B+C)]) = Law 9
[A'B' + AB' + B'C"' = Law 8
[B'(A’ + A) + B'C") = Law 5
[B'1+ B’ C’] = Law 1D
[B’(l +0N) = Law 2
(B ] Law 1
B = Law 4
B

The first step in the derivation, double negating the expression, establishes the conditions
for the application of Law 9D. One of the negations is pulled into the bracketed expression
converting the product into the OR, of each product term, negated. As shown, Law 9 can be
applied to an expression with more than two terms. In the next step, Law 9 is applied to each
term in parenthesis. What remains is a set of product terms inside the brackets. Over the next
five steps this product term is simplified. In the final step, the second negation introduced
back in the first step of the proof is combined with the B’ inside the brackets, yielding the
desired result.

2.7 Truth Table to Symbolic

The most technical transformation in the design process is transforming a truth table to sym-
bolic expression. The idea behind this conversion is captured by the following analogy. Imagine
eight members of the college cheer squad, each have a number between 0...7 pinned to their
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uniform, are gathered together. Whenever members of the squad hears the number pinned to
their uniform they give a cheer. If a member hears any other number, they do nothing, even
if someone else is cheering like crazy.

In order to get a cheer whenever 1, 4, 6, or 7 was announced over the public address system,
which members of the squad should be selected? Clearly, four members of the squad would be
selected, the member with number 1, the member with number 4, the member with number
6, and the member with number 7.

The squad members in this analogy are circuit elements called minterms. A minterm for
a function is a Boolean expression evaluating to logic 1 for a single combination of the inputs
and evaluates to logic 0 for every other input. A cheering squad member corresponds to a
minterm with an output of 1. The number pinned to each squad member corresponds to the
binary input which causes the minterm to output 1. In order to build a symbolic expression for
a truth table, first select the minterms corresponding to the inputs where the function equals
1. Next, OR together these minterms and label the output of the OR gate with the function.
In the cheer squad analogy, the ability of sound from any member of the cheer squad to be
heard corresponds to the OR gates.

Minterms Up till now minterms have been abstract entities, albeit with well-defined prop-
erties. To change that, consider all the minterms for a function with three input variables
A,B,C. Since F has eight different inputs, it will have eight minterms. Next, build the
minterm that “recognizes” the input A = B = C = 1. This task is accomplished by creating
an expression which outputs 1 only when A = B = C = 1. In this case, the minterm is ABC
because it equals 1 when all the inputs are 1, and for any other input, a 0. This minterm is
denoted my, the lowercase m signifies that this is a minterm and the 7 denotes the decimal
representation of the input which causes this minterm to equal 1.

The minterm for the input A = 0,B = 1,C = 0, mo, is A’BC’. Negating the A and C
variables allows a 0 input value for these variables to be inverted to 1 before being ANDed.

In order to make generating the remaining six minterms easier, formalize the observation
just made and call it the minterm trick. A minterm for a particular input needs to include
all the variables. If a variable’s value is equal to 0, the variable should be negated in the AND
expression, if its value is 1, it appears as itself in the AND expression. The table below shows
all the minterms for three variables A,B,C.

A | B | C || minterm | symbol
0]0]O0 A'BC mg
0]0]1 A’B’C my
0[11]0 A’BC’ ma
0|11 A’BC ms
11010 ABC’ my
1101 AB’C ms
1111]0 ABC’ me
1111 ABC my

A minterm is said to “recognizes its input” when that input causes the minterm to evaluate
to 1. Thus, minterm mg recognizes the input (A, B,C) = (0,1,1) and ignores all other inputs.
In order to construct the symbolic expression for a truth table, OR together the minterms for
which the function equals 1. Thus, when any one of the minterms recognizes its input, one
of the inputs to the OR gate will equal 1 causing the output of the OR gate to become 1.
Note, that at most one of the OR gates inputs will equal 1, since only one of the minterms
will recognize its input. If none of the minterms recognizes the input, all the inputs of the OR
gate will equal 0, causing the output of the OR gate to equal 0.
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Process 2.6: Truth Table to Symbolic

To lend context to the discussion of the conversion process, let’s describe this process by
converting the truth table shown below into a symbolic expression.

A| B | C| FABC)
000 0
001 1
0(1]0 1
011 1
100 1
1101 0
1[1]0 0
111 1

Step 1: Write out the minterms for each input. While you only need to write
out the minterms for the product terms where the output equals 1, it does us no harm in
writing out the minterms for all the rows of the truth table as shown in the truth table

below.
A C || F(A,B,C) | minterm
0[0]O0 0 ABC
001 1 A'B’C
0[1]0 1 A'BC’
0|11 1 A'BC
11010 1 ABC’
1101 0 AB’C
11110 0 ABC’
1111 1 ABC

Step 2: OR together the minterms where the function equals 1. There are
five inputs for which F(A, B,C) equals 1, so the symbolic expression for F' will include
the five minterms from the rows where F' equals 1. Hence,

F(A,B,C)=A'B'C+ A'BC' + A'BC + AB'C' + ABC

Now, examine what happens to F for the input (A4, B,C) = (0,0,1). The minterm
my = A’B'C evaluates to 1 while all the other minterms evaluate to 0. Since the OR
function evaluates to 1 when any of the inputs are equal 1, F' equals to 1. Hence,
F(0,0,1) =1 as expected. When (A, B,C) = (1, 1,0) is applied, all the minterms in the
symbolic expression for F' evaluate to 0 because none of them recognize this input. Thus,
F(1,1,0) = 0 as expected.

When a function is constructed by ORing together minterms, it is said to be in canonical
sum of products form or canonical SOP form. A symbolic expression is said to be in SOP
form when it consists exclusively of a collection of product terms ORed together. The term
sum/product is used to refer to the operators OR/AND respectively because these are what
the operators look like in normal arithmetic. The term canonical is used because this symbolic
form is the most elementary form possible to describe the function.

The canonical SOP representation for F' defined above can be abbreviated as F'(A4, B,C) =
> m(1,2,3,4,7) where the > symbol denotes the ORing together of minterms 1,2,3,4 and 7.
In general, > m(list) describes the inputs for which the function equals 1. When asked for a
canonical SOP expression in the homework, write either the symbolic expression out, or use
this abbreviated form.
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Engineers are always striving to minimize the cost of their solutions. Towards this end, a
second way to transform a truth table into a symbolic expression is introduced. It replaces the
minterms with a different kind of building block, the maxterm.

Maxterms A maaxterm for a function is a symbolic expression evaluating to 0 for a sin-
gle combination of the inputs and evaluates to 1 for every other input. Before constructing
symbolic expressions for a truth table, it is necessary to examine the structure of maxterms.

Since the function F(A, B,C) has three inputs, it will have eight maxterms. Start by
creating the maxterm for the input (4, B,C) = (0,0,0). Many different expressions can be
derived which equal 0 only for this input, but the simplest is A + B + C. This maxterm
is abbreviated My, the uppercase M signifying a maxterm and the 0 denoting the decimal
representation of the input which causes this maxterm to equal 0. The mazterm trick is used
to simplify the process of creating maxterms.

A maxterm for a particular input needs to include all the variables. If a variable’s value is
equal to 1, the variable should be negated in the OR expression; if its value is 0, the expression
appears as itself in the OR expression. The table below lists all the maxterms for the three
variables A, B, C.

A|B maxterm | symbol
A+B+C M,
A+B+C M,
A+B'+C Mo
A+B+C Ms
A+B+C M,
A+B+C Ms
A+B+C Mg
1 AB+C | M;

In order to construct the symbolic expression for a truth table, AND together the maxterms
for which the function equals 0. Thus, when any one of the maxterms recognizes its input, one
of the inputs to the AND gate will equal 0, causing the output of the AND gate to go to 1.
Note, that at most one of the AND gate’s inputs will equal 0, since only one of the maxterms
will recognize the input. If none of the maxterms recognizes the input, all the inputs of the
AND gate equal 1, causing the output of the AND gate to equal 1. These ideas are applied to
the function F(A, B, C) below.

A B F(A,B,C) | maxterm | symbol
0 A+B+C M,
A+B+C M,
A+B+C M,
A+B+C M3
A’+B+C M,
A+B+C Ms
A’+B+C Mg
A’'+B+C My,

= Rl Bl B E==l K =] Kool Nan)
ool rrlolo
= ol |lol~lol~loln

= Rl Bl B E==l K ==] N o] Nan)
[l B K=l K=] Nl ] Henl Han)
= ol |lolrlol~loln
—| OOl | | |~

There are three inputs of F(A, B,C) equal to 0, so the symbolic expression for F includes
the three maxterms from the rows where F' equals 0. Hence,

F(A,B,C)=(A+B+C)A +B+C')(A' +B +0C)

What happens when the input (4, B,C) = (1,0,1) is applied? The maxterm Ms = (A" +
B + ') evaluates to 0 while all the other maxterms evaluate to 1. Since the AND function
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evaluates to 0 when any of the inputs are equal 0, F' equals to 0. Hence, F/(1,0,1) = 0 as
expected. When (A4, B,C) = (1,1,1) is applied, all the maxterms in the symbolic expression
for F' evaluate to 1 because none of them recognize this input. Thus F(1,1,1) = 1 as expected.

This representation of F'is called its canonical product of sums form or canonical POS form,
because F' is represented in its most elementary form as the AND (product) of a collection of
OR (sum) terms. The canonical POS representation in the example can be abbreviated by the
expression F(A, B,C) = [[ M(0,5,6) where the [] symbol denotes the AND, the M symbol
stands for maxterm, and the numbers in the list are the inputs for which F(A, B, C) equals 0.

Notice, the functions in the two minterm and maxterm examples are the same. This was
done to illustrate two points. First, the inputs present in the minterm list are those that do not
appear in the maxterm list. In other words, F'(A,B,C) = > -m(1,2,3,4,7) = [[ M(0,5,6).
This should make sense. The minterm list denotes those inputs for which the function equals
1. If the function does not equal 1 for a particular input, this input is not in the minterm list,
and then the function must equal 0 for this input, hence this input will appear in the maxterm
list.

The second reason for using the same function is to illustrate how different realizations of
the same function have different costs. A solution requiring fewer gates will cost less. The
following table summarizes the number of gates required in the SOP and POS realization of
F(A,B,C).

SOP | POS
number of NOT's 3 3
number of ANDs 5 1
number of ORs 1 3

Assuming that AND gates and OR gates have the same cost then the POS solution costs
less. Thus a good engineer would recommend a canonical POS realization over a canonical
SOP realization.

While, the transformation from a truth table to a symbolic expression may be the most
technically challenging, it is certainly not the most difficult. This title belongs to the trans-
formation of a word statement into a truth table. The difficulty of this transformation has
its origin in the puffy cloud outline of a word statement shown in Figures 2.1 2.2. Words can
be ambiguous and the ability of authors to convey precisely what the digital system needs to
accomplish depends on their skill with the English language.

2.8 Word Statement to Truth Table

There is no algorithmic approach guaranteed to transform a word statement into a truth table.
That said, the following list outlines essential information to obtain from the word statement
in order to have any hope of transforming it into a truth table.

Process 2.7: Word Statement to Truth Table
To lend context to the discussion of the conversion process, let’s describe this process by

converting the following word statement into a truth table.

Determine the truth table for a function with three bits of input and one bit
of output. The output of the function should equal 1 when the 3-bit binary
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input represents a binary number greater than 4.

Step 1: Identify the inputs and outputs and their meaning

The function has three bits of input and one bit of output. Since the inputs and
outputs were not given names, use the default labels as, a1, ag for the inputs and F for
the output. The input variables are given subscripts because they are working together
to form a 3-bit binary number. The binary number is referred to as A and its individual
bits as as, a1, and ag. Hence, when (a2, a1,a9) = (1,0,1) then A = 5.

Step 2: Write out the skeleton of the truth table. Many 3-variable truth tables
have been shown in this chapter. The notable point in this example is that the output is
abbreviated as F(A) to save space.

F(ag, ay, ao)

HH»—!HOOOOS
=R o|lol ool

=
HOHOHOHOOQ

Step 3: Fill out the truth table. This example requires us to interpret all the
inputs bits together as a single value. For example, we will look at the input (a,b,c) =
(1,1,0) not as three separate bits but as the binary number 1105 which is equal to 61¢.
With this in mind, let’s try filling up the truth table.

Since the output should equals 0 for inputs less than or equal to 4 = 1005, we should
list the output for inputs (0, 0,0) to (1,0,0) with 0. Likewise we should fill in the output
with 1 for inputs (1,0, 1) to (1,1,1) as shown in the following table.

F(ag, ay, ao)

HH»—!HOOOOS
»—l»—tOO»—l»—AOOS
r—*Or—*Or—‘O}—‘OOQ
—l RO ololol o

Before moving on, let’s consider one final problem with two twists; the truth table will
describe a function with four variables truth table has three bits of output. For the sake of
brevity, the second and the third steps of the transformation process are combined.

Determine the truth table for a digital system having two, 2-bit inputs A = ajag
and B = b1bg. Each 2-bit input represents a 2-bit binary number. The function has
three bits of output called G, L, and E, which stand for greater, less, and equal,
respectively. F equals 1 when A= B, G=1when A > B,and L =1 when A < B.

Step 1 The function has four bits of input and three bits of output. The names of these
variables are clear from the word statement.
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Step 2 & 3 The truth table for this function has 16 rows because there are 2* = 16 combi-
nations of four bits (see page 3). In order to better visualize the solution to the problem,
the values of A and B (derived from their values of a1, a¢ and by, by) are included in the
truth table.

aj | ap bl bo A| B G|L|FE
00|00} O0O|O0O|O|O0O]|1
OO0 01T }]Oj1]0|1]O
0|0 |1]0]O0O]2]0|1]0
O] O0|1T]1T}]O0O]|3]0|1]0
0100y 1]0}1|0]O0
Oj1}j0|1j1]1|0]|]0]|1
Oj1}j1]0|1{2)01|0
o1 (1 ]1)1{3)J011|0
1100|020 1]0]O0
17001211} 1]0]0
17010} 2|2]0]0]1
110112 3|]]0]1]0
111101030 1]0]O0
1{1(0}13|1|1]0]0
17110} 312]1]0]0
1 {11 ]13[3J0]0|1

In order to transform this truth table into a symbolic expression, realize each of the three
outputs are independent of the others. For example, to determine the symbolic expression for
G, cover-up the output columns corresponding to the L and E outputs and implement G. In
order to realize L, just cover-up the columns associated with G and E and implement L as if
the other two outputs did not exist. This yields the following three equations for the outputs.

G(al, ap, bl, bo) = Z 7’)’L(47 8, 9, 12, 13, 14)
L((Zl, agp, bl, bo) = Z m(l, 2, 3, 6, 7, 11)
E(a1,a9,b1,b9) = >_m(0,5,10,15)

Of course this leads to the question of how to build the circuit diagram for this 4-input,
3-output function. Students often want to OR together the G, L, and E outputs in order to
have a single output, but this is would be incorrect because the word statement asked for three
separate outputs. The correct way to build the circuit diagram is to build each of the circuits
separately, give each its own output, and have them share the same inputs. A rough sketch of
the circuit is shown in Figure 2.7.

Notice that the three output circuits share the same inputs, but otherwise are independent
of one another. Sharing inputs allows each circuit to coordinate its output with the other
circuits. When each circuit does what it is supposed to do for that input, the output looks like
a unified whole even though it is generated from three separate circuits.

2.9 Timing Diagrams

After a circuit has been realized in hardware, the logical representation of Os and 1s is replaced
by physical voltages representing these logic levels. In order to observe the behavior of a phys-
ical digital system, an engineer typically uses a logic analyzer or oscilloscope. The waveforms
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Figure 2.7: The circuit diagram for a circuit which compares the magnitude of the two inputs
A = ajag and B = b1bg. Many of the internal details have been omitted.

drawn by the logic analyzer when applying inputs and examining the outputs is called a timing
diagram. A timing diagram is a graph of the logic value of a signal versus time. Typically,
several signals are combined on the same timing diagram to save space and in order to clearly
show the relationship between the signals.

It is imperative to check if the digital system implemented behaves according to its spec-
ification. Hence, an understanding of timing diagrams is essential. With a small circuit it is
reasonable to apply every possible combination of inputs and examine the output of the circuit.

To clairfy these concepts, let’s look at a timing diagram for digital circuit with 3 bits of
input A, B,C and 1 bit of output F(A, B,C) shown in Figure 2.8.

A /
SEE e W
c_ T\

FaBCc) [\ [

time
Figure 2.8: A timing diagram for a function with 3-bits of input and 1-bit of output.

A few observations about this timing diagram are in order:

e The vertical axis for each waveform represents the logic level of that waveform. There
are two levels low (logic 0) or high (logic 1).
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It takes a finite amount of time for a waveform to change logic levels. This is shown
by sloped transitions between logic levels. You do not need to show this slope in your
hand-drawn timing diagrams.

A positive edge occurs when a waveform changes from logic 0 to logic 1. You can
remember this by associating “positive” with the slope of the change.

A negative edge occurs when a waveform changes from logic 1 to logic 0. You can
remember this by associating “negative” with the slope of the change.

The positive and negative edges occur slightly after the time divisions. There is nothing
special to read into this. This is just the way the waveDrom software draws waveforms.

The input waveforms go through all combination of the inputs. While there are many
ways the input waveforms could be sequenced to do this, it is convention to sequenced
the inputs in truth table order.

When “reading” information off a timing diagram focus on the regions where the signals
a steady, not where they are changing. In our example, the signals are steady half way
between the time divisions.

The units on the time axis are unimportant for the time being. That said, time units in
the nanosecond range would be reasonable.

At time=0.5 the input (A, B,C) = (0,0,0) and the output in response to this input is 0.

At time=2.5 the input is (0, 1,0) and the output is 1. Continue reading inputs and outputs off
the timing diagram to verify that you get the information in the following truth table.

A|B|C| FABC

0

el Rl B Bl ==l =) K==l R )
[l Bl K=l K=] Bl Nl Ken) Nan)

| OO OO

OO~ OO
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2.10 Exercises
1. (2 pts. each) Given: F(A,B,C,D) = (AB' + (C + (AD)")(BD))

a) Determine the truth table for F'(A, B,C, D)

b) Draw a schematic of the logic circuit which realizes F' as shown, i.e. do not use
Boolean Algebra on F.

2. (2 pts. each) For the circuit in Figure 2.9

a) Write a Boolean expression for the function.

b) Draw the truth table for the function.

%Z:}’i%— F(A,B,C,D)
p >0

Figure 2.9: The circuit for Problems 2 and 3.

3. (2 pts. each) For the functions F,G,H,I defined by the truth table shown below:

a) Determine the canonical SOP and POS realization for F,G, H, I.

b) Draw the circuit diagram for the canonical SOP and POS realization.

Treat each output independently of the other. For example when working with function
I, cover up the columns F,G and H.

e e k=l ==l k=1
—l=olol~~lolol
—lol~lolrlolrlolQ
ool ool
(= Kl e EE EE R )
olr|lolo|lo|lo | ~>
=l =l =l =l ]

4. (2 pts. each) Prove the validity of the following statements using the laws of Boolean
Algebra. For each step of the proof, identify which law was used.
a) XY +XY+XY=X+Y
b) (X+Y)X'Y' =X'Y'
c) X+Y)X' +2)=XZ+X'Y
d) XY+ X+Y)Z=XY'+Z
) AAC+BC+AB=A'C+ AB
f) A(B+C)=AB+ AB'C

e
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5.

10.

11.

12.

13.

CHAPTER 2. REPRESENTATIONS OF LOGICAL FUNCTIONS

9) (A+B+C)A+B+C)A +B+C)A +B +C") = (A+ B)(A + )

(4 pts.) Design a circuit called MUX2. MUX2 has three bits of input S, yo,y1 and one
bit of output F. If S =0, then F = yg; else if S =1, then F = y;.

a) Write down the truth table for the MUX2 function.
b) Determine the canonical SOP realization for MUX2; do not simplify.

(6 pts.) Design a circuit called MUX4. MUX4 has six bits of input S1.50, Yo, 1, Y2, Y3
and one bit of output F'.
If S1.5¢ = 00 then F' = yq
else if 515y = 01 then F =y
else if 515y = 10 then F' = ys
else if 5159 = 11 then F = y3
Without writing down the truth table determine a SOP expression to realize F by listing
all possible inputs which will cause F to equal 1. Then try to simplify your expression
using Boolean Algebra.

(4 pts.) Design a logic circuit called MAJ which has three inputs A, B,C and one
output Z. The output equals 1 when a majority of the inputs are equal to 1, otherwise
the output is 0.

a) Write the truth table for the MAJ function.

b) Determine the canonical SOP realization for the MAJ function, do not simplify.

(4 pts.) Let X and Y each be 2-bit signals whose elements are x1x¢ and y;yo respec-
tively. Determine the > m and [[ M expression for a circuit whose 1-bit output z is
defined by the following statement.

if (X ==Y) then z = 1 else z = 0
(4 pts.) Let X and Y each be 2-bit signals whose elements are 2129 and y;yo, respec-
tively. Determine the Y m and [[ M expressions for a circuit whose 1-bit output z is

defined by the following statement.

if (X +Y > 3) then z = 0 else z = 1

(3 pts.) Determine the canonical SOP and POS expression for F'(A4, B,C) = [[ M(0,1,4,5)

Hint, compose the truth table for F'.

(3 pts.) Determine the canonical SOP and POS expression for F(A,B,C,D) =
>~ m(0,4,12,15) Hint, write out the truth table for F.

(4 pts.) For the function F(A,B,C) = BC + AB'C’, draw a timing diagram for an
input sequence that follows the same order as the rows of the truth table. Assume a
propagation delay for NOT, AND and OR gate are all 10nS.

(4 pts.) Complete the timing diagram in Figure 2.10 for the functions F(A4, B,C) =
AB’'+ BC + ABC' and G(A, B,C) = (A+ B")C + (BC")
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A /
s/ /J
c__/ \_/J J /S

F(A,B,C)

G(A,B,C)

time

Figure 2.10: The timing diagram for two functions, F'(A, B,C) and G(A4, B,C).

14. (16 pts.) Design a circuit to control the water pump of a washing machine. The pump

15.

will not pump water if

The lid is closed and the cycle is not fill
The cycle is fill and the detergent level is empty
The detergent is not empty and the lid is open

The variables for this problem are:

L = lid is closed
C = cycle is fill
D = detergent is empty

P = pump will pump water

Create a truth table which describes when the pump will not pump water. Call this
output P’. Determine the canonical SOP expression for P’. Use this canonical SOP ex-
pression to generate a circuit diagram for P. This can be done by inserting an inverter
onto the output of the circuit.

Take the P’ column from truth table and invert all the entries to generate a new out-
put column called P (because the negation of P’ is P). Determine the canonical SOP
realization for P using this new column.

Lab Design a hexadecimal-to-seven-segment display (hex2SevenSegment) digital circuit.
The hex2SevenSegment circuit converts a 4-bit input that represents a hexadecimal digit
to a 7-bit output that displays the hexadecimal digit on a 7-segment display as shown in
Figure 2.11. A 7-segment display is an figure-8 shaped arrangement of 7 LEDs that can
be individually illuminated.

Each of the 7 LEDs is associated with the output from the hex2SevenSegment circuit
as shown in Figure 2.12A. Active high LEDs illuminate when their input is logic 1 and



40 CHAPTER 2. REPRESENTATIONS OF LOGICAL FUNCTIONS
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Figure 2.11: The connection beteen the 4-bit input nd the 7-segment display.
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Figure 2.12: A) The individual segments of a 7-segment display and their bit position in the
7-bit output from the he2SevenSegment circuit. b) The illumination patter for the digit “4”

turn-off when their input of logic 0. If the LEDs of a 7-segment display are active then
a binary input of 1100110 would display the pattern shown in Figure 2.12B

Since there are many different ways to illuminate the 7 segments to form the characters
0 ...F, we will standardize our pattern to those shown in Figure 2.13.

The truth table for the hex2SevenSegment circuit is started below. Complete the truth
table by filling the outputs for the seg column. Note that the number inside the square
brackets is the bit index in the 7-bit output. The relationship between the bit index and
the segments is shown in Figure 2.11.
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Figure 2.13: The illuminated patterns for all 16 inputs.
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Chapter 3

Minimization of Logical Functions

The intent of this chapter is to explore how to realize circuits efficiently. Efficiency can be
measured in many different ways; number of gates, speed, power dissipation, and layout size,
being just a few. A generally accepted meaning of minimization is to minimize the number
of gates required to realize a function in SOP or POS form. It should be clear that any logic
function can be realized in an SOP or an POS form. For all but the simplest digital systems,
the OR gate cannot be eliminated from the SOP realization. Hence, the focus should be
on eliminating as many AND gates as possible. To do this, similar minterms are combined
together using a trick from Boolean Algebra.
Consider the function F(A, B,C, D) defined by the truth table below.

A|B|C| F(A B,C)
0/00 0
001 0
0[1]0 1
011 1
1[0]0 0
1001 0
1[1]0 0
111 0

The canonical SOP expression for this function is F'(A, B,C) = A’BC'+ A’ BC'. This digital
circuit requires two NOT gates, two AND gates and one OR. gate. This realization, however,
is not the most minimal one for F. Consider the following Boolean Algebra manipulations:

1 A'BC'+ A'BC =
2 A'B(C'+C) =
3 A'B(1) =
4 A'B

This realization of F' requires one NOT gate, one AND gate and zero OR gates. Clearly,
this realization requires fewer gates then the first realization. Hence, it is a more efficient
solution.

43
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The minterms used to realize F(A, B,C) are A’BC’ and A’ BC, corresponding to the inputs
010 and 011 respectively. The factoring in Line 2 takes advantage of the fact that each of the
minterms has two variables in common, A’ and B. This factoring could also be viewed as a
result of the fact that the binary inputs of the two minterms have two bits in common A = 0
and B =1 (see the truth table for ). The input variable changing between the two minterms,
C, is factored out in Steps 2 and 3 in the above derivation. This observation forms the basis
of the simplification trick:

Simplification Trick: Two minterms whose inputs differ by a single bit may be
replaced by a single product term that contains the variables which are the same
in both minterms and excludes the variable which changes.

The simplification trick is used to obtain a simplified form for the function G defined by
the truth table below.

A|B|C| G, B,C)
0(0]0 0
001 1
0[1]0 1
011 0
1]0]0 0
101 1
1[1]0 1
111 0

G has four minterms; the main task is to identify which pairs differ by a single bit. Inputs
001 and 101 differ by a single bit, A. Thus, with the simplification trick, the product term
derived for this pair of minterms is: B’C. Likewise, the inputs 010 and 110 differ in the A
bits, hence their product term is BC”’. Since the product terms are ORed together in the SOP
realization, the reduced product terms generated by the simplification trick are ORed together,
hence G(A, B,C) = B'C + BC'. Trying to use Boolean Algebra on this expression will not
produce a more minimal SOP form.

This simplification trick works fine for small examples. However, when the number of inputs
to the function increases by 1, the number of rows in the truth table doubles. Identifying pairs
of inputs which differ by a single bit would quickly become tedious and error-prone. A more
efficient technique requires rearranging the truth table to make executing the simplification
trick easier.

In order to accomplish this goal, the truth table is arranged so that rows of the truth table
whose inputs differ by a single bit are adjacent to one another. With this accomplished, the
simplification trick can be invoked by looking for adjacent 1s. Such a rearranged truth table is
called a Karnaugh-map or Kmap for short. A Kmap for a function with three input variables
A, B,C is shown in the leftmost Kmap.

Each of the cells in the Kmap corresponds to a row of the truth table and consequently
has a unique combination of A, B, C' variables. The A, B, C value of a cell is determined by
reading off the A bit from the row index on the left and reading the B, C bits from the column
index at the top. The Kmap to the right has the decimal representation of ABC placed in
each cell. This numbering of the cells make the placement of the 1s of a function easier when
specified in the Y m form.

Most importantly, notice that, given any cell, the cells to the left, right, up, and down all
differ by a single bit. For example, the neighbors of the cell for the value 5 (“cell 57) are 1, 4,
7, each differing from 5 in the A, C, B variable, respectively. Cells 0 and 3 are not considered
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Figure 3.1: A) The empty shell for a 3-variable kmap. Note it has 8 empty cells for the output
of the function for the corresponding input. B) The 8 cells of the kmap filled in with the
decimal equivalent of the 3-bit input corresponding to that cell. Note the bit order is A as the
MSB and C as the LSB.

A\BC [[ 00 ] 01 | 11 | 10 A\BC [[ 00 [ 01 | 11 | 10

0 0 0[1]37]2

1 1 415776
A B

neighbors of cell 5 because they differ by two bits. Finally, notice that cell 4 and cell 6 differ
by a single bit B, so they should be placed adjacent to one another, but are separated on the
Kmap. To do this, imagine a 3-variable Kmap residing on the surface of a torus (doughnut)

The process of manipulating a 3-variable Kmap onto the surface of a torus is shown in
Figure 3.2.

e N INDPER e =5

Figure 3.2: The folding and stretching required to transform a 3-variable Kmap onto the
surface of a torus. The shaded numbers are on the back side of the surface.

When a Kmap is solved correctly the resulting SOP expression uses the minimum number
of gates to realize the circuit in SOP form. Such a minimal SOP expression is referred to as a
SOP in expression.

3.1 Karnaugh Maps

Using a Kmap to determine a SOP ,;, realization of a function is a 4-step process.

Process 3.8: Solving a Kmap

This process is examined by determining the SOP ,;, expression for the function
G(A,B,C) => m(1,2,5,6). Note, this expression is the same function minimized ear-
lier.
Step 1: Draw an empty kmap
The first step is to draw an empty Kmap using the input variables of the function
A, B,C. Since there are three input variables, this will be a three-variable kmap and look
exactly like the Table below. Note that you should draw all 3-variable kmaps using this
rectangular tabular format with the variables or the function in question in the upper
left corner of the table.
A\BC || 00 | 01 | 11| 10
0
1
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Step 2: Place 1s in the Kmap for those inputs for which the function is to
equal 1. Typically, the Os of the function are omitted from the Kmap. It is understood
that if you see a blank space in a Kmap, the function equals 0 for that input. The Kmap
below shows the Kmap for G.

A\BC || 00 | 01 | 11 | 10
0 1
1 1

Step 3: Identify and circle pairs of adjacent 1s in the Kmap By adjacent, we
mean cells whose inputs differ by a single bit. Since these neighbors lie up, down, let and
right, we sometimes call these Manhattan neighbors, because in the epynomiously named
city, streets are laid out in a clean grid and blocks consider neighboring when they share
a street. Once you have found a pair of adjacent cells, circle them. Let’s circle the pair
of 1’s in cell 1 and 5 as well as the pair of 1’s in cell 2 and 6.

A\BC || 00 | 01 | 11 | 10
0 1 1

] 1@

Step 4: Write the Boolean expression for the circled cells. The Boolean ex-
pression for a pair of adjacent 1 is formed by applying the simplification trick. Remember
that this technique asks us to write down the input variables which do not change and
discard the input variable which does change.

For the 1’s in the red circle, B = 0 and C' = 1 for both cells and the A variable
changes. Hence, the Boolean expression for this grouping is B'C.

For the 1’s in the blue circle, B = 1 and C' = 0 for both cells and the A variable
changes. Hence, the Boolean expression for this grouping is BC'.

Step5: OR together the circled Boolean expressions. Since we OR together
the minterms when forming a canonical SOP expression, it makes sense that we should
OR together the product terms found using the simplification trick. In our example, this
step yields the SOP i, expression G(A, B,C) = B'C + BC".

To explore more fully how to solve Kmaps, consider the following truth
table which lists seven functions F'... M each having three inputs. The
SOP nin expression is derived for each of these functions, along the way
illustrating many of the properties needed to solve Kmaps.

A|B|C||F|G|H|IT|J|K|L| M
ojojofojofoj1j1r;1|1]0
ojoj1ryojof1j1j0; 1|10
o(1jo0foj1fo0oj0j1}1 0|0
0|11 1{1,1(0j0|0]|1]O0
ryo0joj1ryof{ojof1joj1,0
11011 1jo0j1j1(1(1(1}]0
1ry1}j0j0(0|0jO|O]1T |00
1j1}j1joj1rj1j1{o0;11})0

o T T T17 F = AB’ + A'BC The grouping of cell 4 and cell 5 yields the product term
AB’. Cell 5 and cell 3 cannot be combined because they differ in two
Kmap for F bits. What is to do be done with the single cell 37 Since this cell
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cannot be combined with another cell, it is just a minterm by itself.
Sad perhaps, but perfectly legal. Hence, F(A, B,C) = AB' + A’BC.

G = A’B + BC The natural question arising from this Kmap is, “Can cell

3 be reused in two different groups?” The answer is “Yes,” and the
reason can be demonstrated by performing some Boolean Algebra on
the canonical SOP expression for G.

G(A,B,C)= A'BC’' + A'BC + ABC =
A'BC" + A’BC + A'BC + ABC =
AB(C'"+C)+BCA +A) =
A'B(1)+ BC(1) =
A'B+ BC

In the second line, the minterm A’BC was duplicated using Law 3
of Boolean Algebra. Note, this is the same minterm covered twice in
the Kmap. Consequently, if a cell of the Kmap is covered by three
different groupings then it would have to be replicated three times in
the Boolean Algebra simplification.

The grouping of cell 2 and cell 3 yields the product term A’B. The
grouping of cell 3 and cell 7 yield the product term BC. Consequently,
G(A,B,C) = A’B + BC. It is now possible to relate what happens
in the symbolic expression when (A, B,C) = (0,1,1) to the method
used to solve the Kmap.

H = C Grouping can be of size four. This can be explained by performing

Boolean Algebra on the canonical SOP expression for H.

H(A,B,C)= A'B'C+ A'BC+ AB'C+ ABC =
(B4 B")A'C+ (B'+ B)AC =
AC+ AC =
(A'+ A)C =
C
In general, grouping can be of size 2! x 27 for integer i and j. It is a

common mistake of students to make a grouping of size 3x2 — 3 is not
a power of 2!

I = A'B’+ AC One does not have to form every possible grouping. It is a

common error for students to include the term B’C in the expression
for I. The expression B’C’ does not cause the function to output
an incorrect value. Rather, this expression is not necessary for the
circuit to function properly. Hence, including the expression B'C’
would make the circuit larger by one more AND gate than necessary.

J = A'C" + AB’ Grouping can be made over the edge of the Kmap using

the doughnut (torus) property illustrated in Figure 3.2. Notice, the
minterms in the grouping on the upper row differ in the B bit.

K=AB'+AC + BC' or K = A'C' + B'C + AB A Kmap may have more

than one correct solution.

L = B’ + C Avoid the temptation to make a grouping of size 3x2. Instead,

make two groupings of size 2 x 2 which overlap in two cells. Yes,
overlapping big groupings is legal, too.
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M =0 This trivial function can be confusing when first encountered. No-
tice that regardless of the input, the output of the function is always
0. Hence, M = 0.

The process of “solving” a Kmap correctly leads to a minimal 2-level SOP expression
(abbreviated SOP i, ). SOP expressions are composed of two main levels of gates. A set of
AND gates (level 1) leading into an OR gate (level 2). The NOT gates are ignored because
they are both small and fast compared to AND and OR gates. The term “minimal” refers
to the fact that the realization of the function requires the fewest possible gates among any
2-level SOP realizations.

In order to understand how to most efficiently solve a Kmap, some notation needs to be
defined. An implicant is a legal grouping of 1s in a Kmap. An implicant which is not contained
in any other implicant is called a prime implicant . An essential prime implicant is a prime
implicant which covers a minterm not covered by any other prime implicant. For example,
ABC is an implicant in the function L(A, B,C), but it is not a prime implicant because it is
contained in the essential prime implicant C.

When solving a Kmap, look for essential prime implicants and remove them from consider-
ation. Removing the 1s from consideration does not mean removing the 1s from the problem.
If needed, the 1s in an essential prime implicant can be used to form other groupings. After the
essential prime implicants have been removed, look for secondary essential prime implicants,
the essential largest groupings covering the remaining 1s. This identification of essential prime
implicants goes on until either all the 1s are covered or a situation like the K function results.
The K function has no essential prime implicants. At this point, resort to intuition (or brute
force search) to minimize the number of groupings to cover the remaining 1ls in the Kmap.
Kmaps can be used to minimize functions in a variety of ways. One such use is discussed
below.

Determine the SOP ., expression for F(A, B,C) = B'C' + BC' + ABC.
The term SOP ,,;,, implies that a Kmap is required to solve the problem. In
this case, figure out a way determine which region of the Kmap is described
by each product term. For example, the product term B’'C’ is equal to 1
when (B, C) = (0,0). Thus, 1s are placed in cell 0 and cell 4 of the Kmap.
The product term BC’ results in 1s being placed in cell 2 and cell 6. The
product term ABC requires a 1 to be placed in cell 7. The resulting Kmap
is shown in the margin. This Kmap can now be solved to determine the
SOP in expression; F(A, B,C) = C' + AB. Incidentally, the grouping of

cells 0, 2, 4, 6 in the Kmap above is affectionately referred to as a Tezxas

doughnut because it has a big 2x2 grouping straddling the ends of the
Kmap.

3.2 4-Variable Kmaps

The Kmap method can be adapted to work with functions of more than three variables. These
larger Kmaps must be constructed so that adjacent cells differ by a single bit in order for the
simplification trick to work. For example, a 4-variable Kmap is shown below with the decimal
equivalent of the binary inputs shown in each cell.
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00 0|13 ]2
01 4 | 5| 716
11 12 13| 15| 14
10 819 1110

It is easy to verify that adjacent cells differ by a single bit. In addition, notice that
adjacencies run across the top/bottom and left/right margins of the Kmap. In order to better
understand this new structure, determine the SOP ,;,, expressions for the following functions.

e F(A,B,C,D)=Y"m(0,1,4,5,8,9)
e G(A,B,C,D)=%"m(0,5,7,10,11, 14, 15)

e H(A,B,C,D)=Y"m(0,2,3,5,6,7,8,10,11, 14, 15)

F = A'C' + B'C’ Resist the temptation to make a grouping of size 3 x 2;

AB\CD || 00 | o1 |

11 |

10

3 is not a power of 2. Notice, one of the 2 x 2 groupings, B’C"’ spans 50

1

1

the edge of the Kmap (Texas doughnut style). o1

1

1

G=A'B'C'D'+ A’BD + AC This example demonstrates an interesting

point: The size of the grouping determines the number of variables in ~ Kmap for

the SOP i, expression. For example, the grouping for covering one

1

1

11 |

10

cell, A’B'C'D’, has four variables, the grouping covering two cells, AB\CD || 00 | 01 |

00

A’'BD, has three variables and the grouping covering four cells, AC, o1

1

1

has two variables. The larger the grouping, the fewer variables that 11

10
are required to describe the grouping, and consequently requires a

smaller AND gate. Kmap for G

H = B'D' + A’BD + C This solution is notable because it contains the

AB\CD || 00 | 01 |

1

—

1

1

=] =] =] =

== =] =

HyperDoughnut grouping — the cells 0,2,8,10 forming the product 00

B’D’. The only other notable feature in this Kmap is the large group- (1]1

ing of size 8, C. 10
Kmap for H

3.3 5-Variable Kmaps

A 5-variable Kmap is a rearrangement of the rows of a 5-variable truth table such that adjacent
cells of the Kmap differ by a single input bit. This rearrangement is accomplished by floating
two, 4-variable Kmaps one above the other. A cell in a 5-variable Kmap can be combined with
the cell to its left, right, below, above, up or down! That is, the three perpendicular directions
along which adjacencies lie must be checked.
Determine the SOP ,;, expression for

F(A,B,C,D,E)=>"m(0,1,2,5,7,8,10, 15,16, 18, 23, 24, 26, 28, 29, 31). Each of the 4-variable
Kmaps is labeled with one of the two possible values of A, 0, or 1. The decimal values of the
inputs can be formed by converting the binary input ABCDFE for each cell into decimal. The
4-variable Kmap with A = 0 is labeled just like an ordinary 4-variable Kmap. The 4-variable
Kmap with A = 1 is labeled in the same order as a regular 4-variable Kmap, except the
numbering starts at 16 because the MSB is 1.
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BC\DE || 00 | 01| 11 | 10

00 111 1 00 1 1

01 1 01

11 11 111

10 1 1 10 1 1
A=0 A=1

This Kmap is notable because it contains the granddaddy of all the border jumping group-
ings, the ultra-doughnut. This grouping occupies the eight corners of the 5-variable Kmap. A
grouping of size four jumps between the two Kmaps. Other than this aspect, the solution is
fairly straightforward. F(A,B,C,D,E)=C'E'+ AAB'D'E+ CDE + ABCD'

To conclude the Kmap concept, a few trends should be noted. First, there is a relationship
between the number of variables in a Kmap and the number of neighbors.

Variables | Neighbors
3 3
4 4
5 5

The relationship is linear, that is a cell in a Kmap with N variables should have N neigh-
bors. By considering the simplification trick, this relationship should make sense. Two cells
are adjacent if their binary representations differ by a single bit. An N-bit number has N
positions where a single bit could be changed, thus it has N neighbors in the Kmap.

Also there is a relationship between the number of 1s in a grouping and the number of vari-
ables appearing in the grouping’s product term. For example, in the G(A4, B, C, D) function
above, the grouping of a single minterm was described by the product term A’B’C’D’ contain-
ing four variables. The largest grouping of four minterms was described by the product term
AC containing two variables. The following table describes this relationship for a 5-variable
function.

Number of 1’s
32

16

8

4

2

1 5

This table demonstrates why making the groupings as large as possible is desirable, large
groupings have smaller AND gates.

Variables

=W N = O

3.4 Multiple Output Circuits

In the previous chapter, digital systems with more than one output were considered. Multiple
output functions are realized by realizing each output independently of the others. For example,
consider a digital system with three inputs A, B, C and two outputs F(A, B,C) and G(A, B, C)
shown in the truth table below:
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If the functions are solved independently of one another, F(A, B,C) =
AB'+ A'BC and G(A, B,C) = BC'+ A’BC’". The only connection the two
circuits have to each other is their inputs, both share the same (A, B, C).
Thus, when (A, B,C) = (1,0,1) F =1 and G = 0 just as expected accord-
ing to the truth table. The circuit diagram of the F' and G functions is
shown in Figure 3.3.

LI/
VIVTY

F(A,B,C)

G(A,B,C)

Figure 3.3: Two functions, F' and G, which share inputs.

However, when you a design circuit that has multiple outputs which share
the same inputs, there are efficiencies that you can extract if you share
product terms. A shared product term is an AND gate that can be used in

the realization of more than one function. For example, consider the two
functions H(A, B,C) =3 m(1,4,5,6) and I(A, B,C) =3 m(1,2,3,5).

The Kmaps and the solutions for these two functions are shown in the mar-
gins. Notice that the grouping B’C appears in both SOP .;, expressions.
This AND gate need appear only once in the circuit diagram because its
output can be directed to both OR gates which form the outputs for H
and I. The circuit diagram for these two functions is shown in Figure 3.4.
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G(A,B,C) = BC + A’BC’
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LI/
VIVTY

H(A,B,C)

I(A,B,C)

Figure 3.4: Two functions which share the product term B’C'.

3.5 “Don’t Cares”

There are situations when engineers “don’t care” what the output of a
digital system is for certain inputs. This situation often happens when
a particular input will never occur. For example, consider the a digital
system which classifies its inputs as either even or odd. It has four bits
of input agasaiag, and one bit of output, F. The 4-bit input represents
a decimal number, 0 < A < 9, the inputs 10 < A < 15 should never be
applied. The output equals 1 when A is even ( 0 is considered an even
number) and outputs 0 when A is odd.

As a first attempt to solve this problem, ignore the inputs corresponding to
10 < A < 15 and leave the corresponding outputs blank. The outputs are
to be defined for inputs 0 < A < 9. The resulting Kmap and its solution is
shown in the margins.

agas\ajag || 00 | 01 | 11 | 10 The solution shown in the margin will certainly work correctly, since the
00 1 T outputs are correctly defined for the legitimate inputs. However, the re-
- ! ! alization could have been made more efficient if the fact that the inputs
10 1 10 < A < 15 will never be applied had been taken into consideration.

Then, it does not matter what the circuit outputs when 10 < A < 15.
Notice, that in the first solution, implicitly the illegal inputs were treated
as odd numbers; the circuit would output a 0 for 10 < A < 15. Since these
are illegal inputs, they are assigned any convenient value with an eye on
making the final realization as efficient as possible. To denote this freedom
in assigning the output of the function either value, an “X” is placed in any
cell of the Kmap where the output doesn’t matter. These Xs are referred
to as “don’t cares”.

’ wa
F(a3,a2,a1,aq) = azag + asajag

The utility of “don’t cares” lies in the fact that they can be used to make
groupings larger and consequently the realization of the function more ef-
ficient. If an X can be used to make a grouping larger, then it should be
included in that grouping. Including “don’t cares” in a group will cause
the circuit to output 1 for the input corresponding to the “don’t care”.
If, on the other hand, an X cannot be used in any grouping, then leave it
uncovered. The circuit will output a 0 for the uncovered “don’t care”.

To better understand how “don’t cares” are used, they are included into
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the even/odd function for inputs 10 < A < 15 and the resulting Kmap
shown in the margin is solved.

By using the “don’t cares” in cells 10, 12, and 14, a grouping of size eight is agas\aiag || 00 | 01 | 11 | 10

00

formed. This grouping reduces the cost of the solution to a single inverter. o1

=[] =] e
>
S

11

| >

10

“Don’t cares” are included in the abbreviated canonical SOP form by writ-
ing a “d” followed by a list of inputs for which the output is unimpor-  r(as,az,21,a0) = af,
tant. For example, the even/odd function is described as F(A, B,C,D) =

> m(0,2,4,6,8) + > d(10,11,12,13,14, 15).

“Don’t cares” can be used on the input variables of a truth table in order to compress the
size of the truth table. Two rows can be combined when their outputs are the same and their
inputs are adjacent (in the Kmap sense) to one another. A single “don’t care” on an input
of a row of a truth table generates two rows; one with the “don’t care” set to 1 and another
with the “don’t care” set to 0. For example, the following two truth tables describe the same
function.

A|B|C| FAB)
01010 0
A|B|C| FAB) 0101 0
x| 0| x 0 0(1]0 1
x| 10 1 011 0
011 0 1]0]0 0
111 1 1101 0
110 1
111 1

Compressed Truth Table Full Truth Table

The row (x,1,0) generates two rows in the full truth table, (0,1,0) and (1,1,0). The
row (A, B,C) = (x,0,z) has two “don’t cares”. Since the values of these “don’t cares” can
be selected independent of one another, this row generates four rows in the full truth table,
(0,0,0), (0,0,1), (1,0,0), and (1,0,1). In general, a row with N “don’t cares” generates 2V
rows in the full truth table. The motivation for using “don’t cares” will become more clear in
later chapters when digital systems with six or more inputs are encountered.

3.6 Minimizing to POS

So far, the chapter has focused on finding efficient SOP .,;, realizations of circuits. However,
Section 2.7 provided a function whose POS realization was less costly than the SOP realization.
It is not difficult to imagine functions for which the POS i, realization is less costly than the
SOP .in realization. In order to derive the POS ., realization of a function F, the function is
transformed — put into a Kmap, a SOP ,;, realization found, and then the SOP ,;, realization
transformed into a POS ,,;, realization for F. In order for this process to work, the two
transformations of the function will have to “undo” one another so they have no net effect on
the function.

In order to cover all possibilities, the transform from any of the starting forms into one of
the ending forms is investigated.
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S m
MM —  SOP in

SOP POS in
POS

Starting Ending
Form Form

Eight potential transforms need to be explored. For each transformation, a plan is developed;
a series of steps. The following five helpful facts become the steps in all these plans.
Helpful Facts

1 Negating a Kmap for F' negates F. If all the bits in a Kmap for a function F' are flipped,
then it is the same as negating the output of F.

2 Negating a SOP expression for F' yields a POS expression for F’. This statement is based
on Law 9 and Law 9D of Boolean Algebra. Law 9 states that (z + y)' = z’y’. Law 9D
states that (zy)’ = 2/ + /. The transformation from SOP to POS is illustrated in the
following example.

F=ABC'+A'BC+AB' +C negate F
F'=(A'B'C'"+ A'BC + AB'+ C) Law 9
F'= (A'B'C"Y(A'BC) (AB")'(C) Law 9D

F'=(A+B+C)(A+ B +C") (A + B)(C)
The shortcut typically used to determine the POS expression is to replace all ANDs and
ORs and negate each variable.

3 Negating a POS expression for F' yields a SOP expression for F’. The proof of this statement
is derived by examining the previous algebraic example from bottom to top.

4 > m(list) = [[ M (list"). list’ denotes the decimal numbers not in list. Since list describes
those inputs for which the function equals 1, list’ describes those inputs for which the
function equals 0.

5 F” = F. This expression is just Law 4 of Boolean Algebra.

The plans used to transform between forms consist of a sequence of steps. At each step,
the function (or its complement) is represented in one of its various forms (Kmap, SOP, Y m,
etc..). Step 1 always describes the given form of the function. Likewise, the last step always
describes the desired form of the function. The action between the steps is implicit from the
beginning and ending forms.

To better understand how a plan is put together and how the transformations are performed,
consider a plan for the transformation of a Y m expression into a SOP i, realization.

Process 3.9: Determine SOP ,,;, given a > m(...) expression.

This should be the (by now) familiar process of drawing a kmap with the correct number
of variable and putting 1’s in the cells where the function equals 1 and then solving the
kmap.

The Plan:
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Step 1 2 3
Function F F F
Form >om(...) | Kmap | SOP iy

The plan consists of three steps. The function in all three steps is F. In Step 1, the
function F' is written in the > m(...) notation. In the second step, the function is
placed into a Kmap using the process outlined in this chapter. In the third step, the
SOP in expression is derived from the Kmap.

Another familiar transform is handled next.

Process 3.10: Determine SOP ,,;, given a SOP expression.

The only difference in this transformation is the beginning form. The discussion on
page 48 illustrates how to put a SOP Boolean expression into a Kmap. Once in a Kmap,
the remaining steps should be clear.

The Plan:
Step 1 2 3
Function F F F
Form SOP | Kmap | SOP i

The next transformation has a worked out solution to guide you through the steps of the
process.

Process 3.11: Determine POS ,,i, given a ) m(...) expression.

The Plan:
Step 1 2 3 4 5
Function F F B’ F’ F’=F
Form > m(...) | Kmap | Kmap’ | SOP pin POS Luin

An example shows how this plan is put into practice. Determine the POS ,;, expression
for F(A,B,C) =>"m(3,4,5).

Step 1 F(A,B,C) => m(3,4,5).

Step 2 The Kmap for F'

A\BC || 00 | 01| 1110
0 1
1 11

Step 3 This step relies on helpful fact 1, inverting the entries in a kmap, negates the
function. Thus, the Kmap for F’

A\BC || 00 | 01 | 11 | 10

0 1|1 1
1 111

Step 4 Requires that we solve the kmap for F’ yielding:

F'(A,B,C)=A'B'+ AB + BC'
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Step 5 Relies on helpful fact 2, negating a SOP expression for F' yields a POS
expression for F’. We will work through the steps here as a review.

F"(A,B,C) = F(A,B,C) = (A'B'+ AB+ BC'"Y
— (A'B')/(AB)/(BC"Y
— (A// _|_ B/I)(AI + BI)(B/ _|_ C//)
=(A+ B)(A'+ B")(B'+ C)

If you have doubts about this process, I invite you to plug in values for (A,B,C), evaluate
the POS i, expression for F' and compare your answers to the kmap you produced in Step 2.

This process will bolster your confidence that these very different looking forms produce the
same logical output for all A,B,C combinations.

Process 3.12: Determine POS ,,;, given a SOP expression.

The Plan:
Step 1 2 3 4 5
Function F F E’ F’ F’=F
Form SOP | Kmap | Kmap’ | SOP nin POS win

This transformation is the same as the >~ m(...) to POS i, , process 11 from Step
2 onward.

Process 3.13: Determine the SOP ,,;,, given a [[ M(...) expression.
The Plan:

Step 1 2 3 4
Function F F F F
Form [IM(..) | Ym(...) | Kmap | SOP i

This transformation utilizes the fourth helpful fact. The swapping of the list of Os for
a list of 1s. This step confuses many first time students so lets work an example to show

how this plan is put into practice. Determine the POS i, expression for F (4, B,C) =
[1M(0,1,2,6,7).

Step 1 F(A,B,C) =1 M(0,1,2,6,7).

Step 2 F'(A,B,C) => m(3,4,5).

Step 3 Follow steps 2 onward in process 9.

Process 3.14: Determine the POS i, given a [[M(...) expression.
The Plan:

Step 1 2 3 4 5 6
Function F F F F’ F’ F’=F
Form [TM(..) | Ym(...) | Kmap | Kmap’ | SOP in | POS min

In Step 2, the list of maxterms, given in Step 1, is transformed into a list of minterms.

yielding a POS i, expression for F'.

The Kmap is negated in Step 4 so that the SOP ., description of F’ can be negated,
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Process 3.15: Determine SOP .,;, given a POS expression.

The Plan:
Step 1 2 3 4 5
Function F B F’ F’=F F
Form POS | SOP | Kmap | Kmap’ | SOP i

This is an interesting transformation because F' must be negated before being placed
into a Kmap. Since F” is in the Kmap, the Kmap must be negated so that the solution
to the Kmap yields a SOP .,;, expression for F.

Process 3.16: Determine the POS ,,;, given a POS expression.

The Plan:
Step 1 2 3 4 5
Function F E’ E’ F’ F’=F
Form POS | SOP | Kmap | SOP i, POS in

An example shows how this plan is put into practice. Determine the POS y,;, expression
for F(A,B,C)=(A'+B+C)(A+C")B'.
Step 1 F(A,B,C)= (A" +B+C)(A+C")B'.

Step 2 Relies on helpful fact 3, negating a POS expression for F' yields a SOP
expression for F’.
F'(A,B,C) =((A+B+C)A+C")B")
=(A+B+C)+(A+C") +B”
— A//B/C/ + A/C// + B

=AB'C'+ A'C+ B
Step 3 The Kmap for F”’

A\BC || 00 | 01 | 11|10

0 17111
1 1 11
Step 4 F'(A,B,C) = AC'+ A'C+ B

Step 5 Relies on helpful facts 5 and 2.
F"(A,B,C)=F(A,B,C) = (AC'+ A’C + B)’
(AC’) (A'C)'B’
( C//)(A// + C/)B/
=(A+C)A+C)B

3.7 Espresso

The Kmap minimization method can be applied to problems with up to eight variables. Beyond
eight variable, the process becomes too tedious and error-prone to be practical. Functions with
20 variables are not uncommon, but would require a truth table containing over a million rows!
An algorithmic approach is needed to handle such large instances. FEspresso https://en.
wikipedia.org/wiki/Espresso_heuristic_logic_minimizer is a 2-level logic minimization
tool, that while not guaranteed to find a minimal solution, does a good job on most functions.
Since Espresso was written before the days of visual interfaces, it is a small program, run from


https://en.wikipedia.org/wiki/Espresso_heuristic_logic_minimizer
https://en.wikipedia.org/wiki/Espresso_heuristic_logic_minimizer
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a command line interface. (A command line interface is a text interface to the programs and
operating services available to the user of a computer.) The operating system prompts the user
by displaying a “>”" character in a window. The user then types in the name of the program
or service they want to access. Typing “espresso” at the command line prompt invokes the
Espresso program.

Espresso is simple to use, just create the truth table for a function in a text editor, then
run Espresso on the file. The input file for Espresso contains:

1.

Comments. Comments are always preceded with the # symbol. If a comment is
encountered, Espresso ignores the rest of the line.

The number of inputs. The number of inputs is described by the statement .1
followed by a number describing the number of inputs to the function. The .i must be
included in an Espresso file.

The number of outputs. The number of outputs is described by the statement .o
followed by a number describing the number of outputs from the function. The .o must
be included in an Espresso file.

The labels for the inputs. The labels for the inputs are described by the statement
.ilb followed by a list of names of the inputs separated by spaces. The .ilb does not
have to be included in an Espresso file. If not included, then Espresso assigns its own
names to the inputs.

The labels for the output(s). The labels for the outputs are described by the
statement .ob followed by a list of names of the outputs separated by spaces. The .ob
does not have to be included in an Espresso file. If not included, then Espresso assigns
its own names to the outputs.

The truth table. The truth table is organized with the input bits on the left and the
output(s) bit(s) on the right. “Don’t cares” in the inputs or outputs are denoted with a
minus sign -. The order of the rows in the truth table is unimportant.

The following is an example Espresso input file for the function F(a,b,c) = > m(1,3,6,7).

# File: simple.txt

# Name: <your name>

# <course name>

# Date: <semester>

# Desc: F(a,b,c) = sum m(1,3,6,7)
.13

.01

.ilb a b c

.ob F

000
001
010
011
100
101
110
111

B =, OOk, O O
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This file must be created in text format — do not create this document in a “word processor”
such as MS Word or WordPerfect. NotePad, Edit, emacs, or vi are preferable choices for
creating this file. Save the example Espresso file as simple.txt. The command line

Running Espresso on the example file produces the following output.

> espresso simple.txt
# File: simple.txt
# Name: <your name>

# <course name>
# Date: <semester>

# Desc: F(a,b,c) = minterms (1,3,6,7)
.13

.01

.ilb a b ¢

.ob F

.p 2

11- 1

0-1 1

.e

Espresso echoes back comments, the number of inputs, outputs, and labels defined in the
input file, and identifies the number of product terms used in the realization. In the example,
the .p 2 statement means that the solution found by Espresso required two product terms.
The two lines after the .p 2 statement describe the realization in a programmable logic array
(PLA) format. In the PLA format, each row represents a product term. The left three columns
of each row represent the state of the inputs variable in the product term. The variables are
in the same order as they were defined in the truth table. The state of a variable can be “1”,
“0”, or “-”.

e 1 means, include the variable in the product.
e (0 means, include the negated variable in the product.
e - means, exclude the variable from the product.

Thus, the row “11-” represents the product term AB and the row “0-1” represents the
product term A’C. The column of 1s to the right of these bits describes which product terms
to use in the realization of the function. A 1 means to include the product term in the function,
0 means exclude the product term from the function — and is seen only for two or more outputs.

Putting both of Espresso’s product terms together yields the optimal solu-
tion F' = A’C'+ AB. The Kmap for this function and its SOP ,;, solution
is shown in the margin.

Command line parameters can be included to specify options, changing the A\BC || 00 | 0

behavior of Espresso. All options consist of a minus sign, a letter, and a 0

command, placed between “espresso” and the name of the input file. As an

example the -o eqntott option will force Espresso to generate a symbolic  p(4, 5, c)= a4’c + aB

output instead of the default PLA output.

> espresso -o eqntott simple.txt
#comments
F = (agb) | (lakc);
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The entire set of options is listed by typing espresso -help at the command prompt. The
-epos option inverts the truth table, yielding a SOP solution for F’. The POS solution is
generated by inverting Espresso’s output using the second helpful fact on page 54. This option
allows a digital designer to quickly compare the cost of a SOP and POS realization.

Generated output can be saved by Espresso by redirecting standard output to a file. This
option is indicated by putting a “greater than” symbol after a command, followed by the
name of the output file. Think of the “greater than” symbol as a funnel, taking the streaming
output of the Espresso program and funneling it into the output file. For example, the output
of the previous Espresso example can be saved into a file called simple.out using the following
command.

a:\> espresso -o eqntott simple.txt > simple.out

Espresso can solve design problems involving multiple outputs. The following Espresso
file describes the example on page 51, where F(A4, B,C) = Y m(1,4,5,6) and G(A,B,C) =
> m(1,2,3,5).

# File: harder.txt

# Name: <your name>

# <course name>

# Date: Fall 2020

# Desc: F(a,b,c) = minterms(1,4,5,6)
# G(a,b,c) minterms(1,2,3,5)

.13

.0 2

.ilb a b ¢
.ob F G

000 00
001 11
010 01
011 01
100 10
101 11
110 10
111 00
.e

The output from Espresso is:

a:\> espresso harder.txt
# Comments

.13

.0 2

.ilbabc

.ob F G

.p 3

1-0 10

01- 01
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-01 11
.e

Espresso used three product terms to realize the functions AC’, A’B, and B’C. The two
columns to the right of the product terms describe which product terms are used to realize
each outputs. Symbolically, the solution found by Espresso is:

e F(A,B,C)=AC' + B'C
e G(A,B,C)=A'B+ B'C

The circuit diagram of the realization for the three functions is shown in Figure 3.4. Notice,
the connections — denoted by dots — between the inputs and the AND gates has a pattern which
is similar to the PLA description of the product terms by Espresso. Likewise, the pattern
formed by the connections of the AND gates and OR, gates is similar to the rightmost three
columns of the Espresso output. This similarity is no accident; the designers of Espresso used
a generalized layout of the of the circuit diagram in Figure 3.4 as a template to describe the
output.
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Exercises

(6 pts.) Design a circuit called DECODE. DECODE has two bits of input S, D and
two bit of output y1yg. If S = 0 then yg = D and y; = 0 else if S = 1 then yg = 0 and
Yy = D.

a) Write down the truth table for the DECODE function.
b) Determine the SOP ., realization for DECODE.

(6 pts.) Design a circuit called FULLADD. FULLADD has three bits of input a,b, ¢
and two bits of output s1s9. The output represents the sum of the three bits.

a) Write down the truth table for the FULLADD function.
b) Determine the SOP i, realization for FULLADD.

(4 pts.) Determine SOP ,,;, expression for the following circuit and draw the circuit
using the fewest number of gates possible.

A B C D

VYV Y

F(A,B,C,D)

Y j)

4. (8 pts.) Design a digital system with four bits of inputs IsI21; Iy and two bits of outputs

010q. At least one of the inputs is always equal to 1. The output encodes the index of
the most significant 1 in the input. For example, if I3l511Iy = 0101, then the index of
the most significant 1 is 2, hence 010y = 10. Submit:

e The truth table.

e SOP ,in expression for O; and Oy.

(8 pts.) Design a 4-input ajagbbg, 4 -output 0305010, digital system. A = ajag and
B = bybg represent 2-bit binary numbers. The output should be the product (multiplica-
tion) of the inputs, that is O = A * B. In addition to determining the output, determine
the number of bits of output. Submit:

e Truth tables.

e Minimal SOP expression for the outputs.
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6. (8 pts.) Design a 4-bit Gray-code to binary converter. A 4-bit gray-code is a sequence
of 4-bit values where successive values differ by a single bit. For this problem use the
sequence: 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010,
1011, 1001, 1000. The index of the 4-bit gray code is its binary value. For example, the
4-bit gray code 0111 is at index 5, therefore when presented with 0111 on its input, the
converter should output 0101. Submit:

A truth table for the converter.

Four k-maps for the converter.

e SOP i, expression for the outputs, no product sharing please (use the -Dso com-
mand line option).

Espresso file for the converter

Espresso output in PLA format

Compare the number of gates required in your solution versus the number of gates
required by Espresso.

7. (4 pts. each) Determine SOP i, expression for:

a) F(A,B,C) =Y m(0,1,3,4,5)

b) F(A,B,C,D)=Y"m(1,5,6,7,11,12,13,15)

¢) F(A,B,C,D) =Ym(0,2,5,6,8,11,12,13, 14, 15)

d) F(A,B,C, D, E) = Y m(0,8,9,10, 13, 15, 22, 26, 29, 30, 31)

e) F(A,B,C,D,E) =Y m(0,2,4,5,7,10,13, 15, 18,21, 24, 26, 28, 29)

8. (4 pts. each) Determine SOP .;, expression for:

A,B,C,D)=15"m(0,1,5,7,10,14,15) + 3. d(2,8)

A,B,C,D) =3m(0,1,3,4,15) + 3 d(10,12)

A,B,C,D,E) =Y"m(2,3,5,7,11,13,17,19,29,31) + 3" d(1, 4,9, 16, 25)
A,B,C,D,E) =Y"m(2,3,6,10,12,13, 14, 18,25, 26, 28, 29) + S d(11, 27)

9. (8 pts. each) Determine SOP ,;;, and POS i, expressions for:

a) F(A,B,C,D)=Y"m(0,1,2,5,8,10,13,15)

b) F(A,B,C,D) =[] M(0,4,6,10,11,12)

¢) F(A,B,C,D) =35 m(0,5,7,10,11,14) + 3 d(3,12, 15)

d) F(A,B,C,D) =[] M(2,6,7,9,15) = [[ d(4,12, 13)

) FW,X,Y,Z)=WX'Z' + X'YZ+W'Y'Z+ XYZ+WXY’
£y FW,X,Y,Z) = (W + X'+ Y (W' + Z')(W +Y)

Hint, the negation of a “Don’t care” is a “Don’t care”.

10. (3 pts.) While grading homework for a digital design class the following question/answer
pair is encountered. What is the problem with the answer given?
Question: Generate the POS ,;, expression for FI(A, B,C) =Y m(2,3,4,5)
Answer: F(A,B,C)=(A+ B')(A" + B)
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(6 pts.) Determine the SOP ,;, realization of the following function.

A|B|C|D]| FABCD)
x| 1]1]x 0
0|lx|0]|1 0
x| x| 0O X
x| 0| 1] x 1
1 | x |01 1

(6 pts.) What is the worst function SOP i, of 3 variable that can be created? That
is, define a function whose minimal SOP form has the largest possible number of product
terms. What is the largest number of product terms that a 4-variable SOP i, expression
can have? How about N variables?

(16 pts.) Sometimes a logic circuit needs to output a logic 0 in order to produce some
behavior. For example, an LED can be attached to a digital circuit output so that it
lights up when the circuit outputs a 0. This response is called an active low output; the
output device is active then the digital output is low.

Build a digital circuit that takes as input two 2-bit numbers, A and B. The circuit
has three outputs which drive three LEDs labeled G, L, and E. The G LED should
be illuminated when A>B. The L LED should be illuminated when A<B. The E LED
should be illuminated when A=B. The LEDs are illuminated when the circuit outputs a
0, otherwise they are turned off.

Determine SOP i, expression for the G, L and E outputs. Determine POS ., expression
for the G, L and E outputs.



Chapter 4

Combinational Logic Building Blocks

In Chapter 1, Figure 1.1, a digital system was defined as a box that transforms binary inputs
to binary output. This definition of a digital system was sufficient to introduce a wide variety
of concepts but is a handicap, now. Following is a more detailed definition of a digital system.

A digital system transforms the data inputs into data outputs. The transformation
performed by the digital system is specified by the control inputs. The status
outputs indicate any exceptional events occurring during the processing of the data.

Figure 4.1 shows a digital system with these four types of input and output, namely, data
input, control input, data output, status output. This classification of inputs and outputs aids
in the construction of complex digital systems using the datapath and control methodology.

Data input
.. —c
Digital Data output

Control System [ Status

Figure 4.1: A modified diagram of a digital system showing the classification of the inputs and
outputs.

Some basic building blocks of digital systems are introduced. While a wide variety of blocks
can be considered, those proven to be most useful in the construction of digital circuits are
presented. If the right block for a particular task does not exist, create a new block using the
methods presented in the last chapter. First in the examination of basic building blocks is a
device that routes one bit of data to one of several outputs based on an address.

4.1 Decoder

65
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Building Block: Decoder

Nomenclature: | N:M decoder

Data Input: 1-bit D

Data Output: | M-bit vector y = ypr—1-.- 4190
Control: N-bit vector s = sy_1...5150
Status: none

Behavior: ys = D all other outputs equal 0

To understand this definition, examine an instance of a 3:8 decoder shown at left in Fig-
ure 4.2. Normally, the arrows indicating the direction of the information flow in to and out
from the decoder are not drawn. To understand the behavior of the decoder, its truth table is
shown to the right of Figure 4.2. Due to space constraints, only part of the entire truth table
is shown.

3:8 Decoder Yo s | si | so | D yo || ye
YWe"0]0]0]0[0]0]o0

Yo 00|01 L]0]0

b Y 0]0[1]0][0][0]0
Ve 0[O0 |1[T[[0][1]0

Ve O 1T[0[0][0]0]0

Yo oo oo

52%1% St o I T B O R VR

‘f ‘f T[ololol[0o]o0]0
10|01 0]0]o0

Figure 4.2: A 3:8 decoder (left) and part of its truth table (right).

From the behavior listed in the description of the decoder, see that the i*” output equals the
data input, where ¢ is the binary code of the select inputs. In other words, when S = sos150 =
0112 = 310 and D = 17 then YrYeYsYalysya2Y1Yyo = 00001000. If S = §928180 = 0112 = 310 and
D =0, then y7yeysyaysy2y1y0 = 00000000.

The utility of this second case might be questionable because all the outputs are the same
and consequently one cannot “see” where the output is being routed. The resolution to this
dilemma requires considering the outputs through time. A decoder is a box which sends a
“stream” of bits to some destination determined by the select lines. If the destination knows
that it is receiving the stream, then it will be expecting both 1s and 0s through time.

The internal organization of a 3:8 decoder must process its four bits of input, consisting
of a 3-bit select and a 1-bit data input, and eight bits of outputs. In the previous chapter,
each bit of the output could be solved independently of the others. Hence, let’s examine the
yo output first. Examination of the truth table and the behavior of the decoder shows yy only
equals 1 when (s2,s1,80) = (0,0,0) and D = 1. Borrowing the minterm trick from page 29,
Yo = shsi sy D results. Every other output shares the characteristic that its output is equal to
1 for a single input. Thus, each output is represented by a minterm as shown in Figure 4.3.

In some digital applications, the need arises to build a larger decoder from multiple smaller
decoders. This is done by fanning-out the data input in a tree-like structure. The following
4:16 decoder shows how a larger decoder is built from several smaller 2:4 decoders.
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Figure 4.3: The internal organization of a 3:8 decoder.

In order to accommodate the 16 outputs, four 2:4 decoders are stacked on top of one another
as shown in Figure 4.4. These four 2:4 decoders have a total of four bits of input. These four
bits are sourced by the output of a single 2:4 decoder. The single data input of this decoder is
the input of the overall 4:16 decoder.

Having organized the structure of the 2:4 decoders, all that remains is to route the select
lines. The outputs of the decoder labeled 3 in Figure 4.4 corresponds to outputs y15y14y13Y12
of the 4:16 decoder. Each of these outputs requires four bits of select with the form s3zsss159 =
11zx. Hence, s3so = 11 must route the data input, D, to decoder 3. Hence, s3so must be the
select to the first level decoder in Figure 4.4. A similar argument for the 2:4 decoders labeled
0,1,2 reinforces the fact that szso must be the select to the first level decoder.

Data routed to output yio2 has sszsesisp = 1100. Thus, routing at the second level of
2:4 decoders seems to be controlled by s1sg. Examining all the other outputs reinforces this
assumption for all the outputs.

4.2 Multiplexer

A multiplexer, often referred to as a mux, is data routing device which behaves exactly opposite
of a decoder. Its structure and behavior is defined in the following table.

Building Block: Multiplexer

Nomenclature: | N:1 multiplexer

Data Input: M-bit vector y = yar—1---Y1%0

Data Output: 1-bit F

Control: loga (N )-bit vector s = sjog,(N) - - - $150
Status: none

Behavior: F =y
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2:4 Decoder yo4;<> Y,
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2:4 Decoder  Yo———< Y,
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Figure 4.4: A 4:16 decoder built from 2:4 decoders.

To understand this definition, examine an instance of an 8:1 mux shown on the left in
Figure 4.5. From the behavior listed in the description of the multiplexer, the i*" data input
is routed to the data output where the binary code of the select inputs is ¢. For example, if
S = 595150 = 1013 = 519 and y7ysYsYay3y29y1yo = 00100000, then F = 1.

Y% 8:1 Mux
— yl S92 S1 So F
-1V, 01010 |y
Y, e 010 |1 |wn
—1y, F 010 [
—y, 011 [y
— y6 1 0 0 Yq
Y, 5,815 L 0L L e
1 1 0 Ye
T 11 [y

Figure 4.5: An 8:1 mux (left) and its truth table (right).
The unusual form of the truth table shown in Figure 4.5 results from the fact that an

8:1 mux has a total of 11 inputs. There are a total of 2!! rows in this truth table making
it infeasible to list every combination of the inputs. Consequently, in order to build an 8:1
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mux, the structure of the truth table must be determined without listing every combination
of inputs. Observe the yy input is routed to the output when sys159 = 000. Consequently,
F = s4ssyyo for this input. Each of the other outputs has a similar minterm form. Since
only one of these “minterms” can equal 1 for a particular select input, the minterms are ORed
together to form the output. The resulting internal organization of an 8:1 mux is shown in
Figure 4.6.

o<

}
}

<

<<

Figure 4.6: The internal organization of an 8:1 mux.

As with decoders, situations arise when a larger mux is built from smaller muxes. The
key idea is to funnel down the many data inputs from smaller muxes to a single output. For
example, construct a 16:1 mux from several 4:1 muxes.

In order to accommodate the 16 inputs, four 4:1 muxes are stacked on top of one another
as shown in Figure 4.7. These four 4:1 muxes have a total of four bits of output. These four
bits can nicely be routed by the inputs of a single 4:1 mux. The single data output of this mux
is the input of the overall 16:1 mux.

The select lines are assigned to the 4:1 muxes based on the following argument. The inputs
of the mux labeled 3 in Figure 4.7 corresponds to inputs y15y14y13y12 of the 16:1 mux. Each
of these inputs requires four bits of select with the form szsss1sg = 11zx. Hence, s3so = 11
must be the select for the output mux 4. A similar argument for the 4:1 muxes labeled 0,1,2
reinforces the fact that s3so must be the select to the output mux.

In order to route y;5 to the output, the select must equal s3sas1s9g = 1100. Thus, routing
at the input level of 4:1 muxes is controlled by s1s9. Examining all the other inputs reinforces
this assumption.

Occasionally the need arises to construct a mux to handle “wide” data inputs, that is data
inputs which consist of more than a single bit. A mux that can handle many bits is referred
to as a multibit muz. A M-bit N:1 mux is defined as a N:1 mux whose data inputs and data
outputs are M-bits wide. For example, the 4-bit 2:1 mux shown in Figure 4.8 has two data
inputs and one data output each 4-bits wide. The internal organization of this mux is shown
on the right-hand side of Figure 4.8. Four, 2:1 muxes are needed to accommodate all the data.
Since the data inputs are to be handled as a single whole, they must be routed to the same
input on each of the 2:1 muxes.
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Figure 4.7: The construction of a 16:1 mux from 4:1 muxes.

1
1
1
4 -
4x2x1 Mux p—7 2:1 Mux
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Y Yo —= F
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B /4 ¥ 4 B Y
4 S S
S S

Figure 4.8: The organization of a 4-bit 2:1 mux. The slash labeled “4” denotes the fact that
these signals are 4-bits wide.

4.3 The Adder

An N-bit adder is a circuit which adds two N-bit binary numbers A, B together generating an
N-bit sum .S and an overflow indication, Ovf.

Building Block: Adder
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Nomenclature: | N-bit adder

Data Input: two N-bit vectors A and B
Data Output: | N-bit vector sum

Control: none

Status: 1-bit ovf

Behavior: sum=A+ B

The behavior of the adder is exactly as expected after reading page 5. Furthermore, the
overflow output is asserted when the adder output is greater than or equal to 2. The con-
struction of an adder illustrates an approach that can be utilized for circuits whose function
can be broken down into modular pieces.

Approaching the design of a 4-bit adder (N = 4) using the design philosophy introduced in
Chapter 2, the truth table has eight bits of inputs, 256 rows, and five bits of outputs. The task
would be tedious, error-prone, producing a realization with a large number of gates. Instead
of building the circuit as one monolithic piece, a module is designed that adds one set of bits
together. Four of these modules are then connected in series to add four bits together. For
example, in Figure 4.9 A = 1011 and B = 0001 are added together using the approach of
page 5.

Figure 4.9: An addition problem and the values of one of its bit slices placed on a full adder.

This addition problem contains four bit-slices . Each bit-slice adds one bit’s worth of the
overall addition problem. The addition circuit is then constructed by stringing together four
of these bit-slice adders (called full-adders). In the example shown in Figure 4.9, the second
bit-slice of the addition problem is outlined. The inputs and outputs of this bit-slice are placed
on a full adder. The full adder has three bits of input and two bits of output. To build a 4-bit
adder, four full adders are strung together in series using the carry lines. The truth table for
the full adder is created by enumerating every combination of inputs and determining the sum
and carry-out for each. The carry-out and sum together are the 2-bit sum created by adding
together the three input bits.

al|b| cl| cout| sum

0{00 0 0

0|01 0 1

0ol11l0 0 1 a\bc || 00 | 01 | 11 | 10 a\bcin || 00 | 01 | 11 | 10
o111 0 0 ! 0 ! !
11010 0 1 coult = bc + alb + ;c ' sumlza b’ c’1+ a’b’c +1 abc + a’bc’
1101 1 0

11110 1 0

17111 1 1
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The SOP i, expression for the outputs is arrived at by solving Kmaps for each of the
outputs. Once, the internal organization of a full adder is complete, four of them are connected
together as shown in Figure 4.10 to build a 4-bit adder.

(o B
J;

$ &

a b a b a b a b

OvE cout cin cout cin cout cin cout cin 0

sum sum sum sum

l SUM

Figure 4.10: The arrangement of full adders to create a multi-bit adder.

The carry-out of each bit-slice becomes the carry-in of the next, more significant, full adder.
This sequence is necessarily broken at the beginning and end of the chain of full adders. Since
there is no carry-in to the least significant bit of an addition problem, the carry-in to the least
significant full adder is set to 0. Since overflow occurs when the result of the addition process
requires more bits than the word size, a carry-out from the most significant full adder indicates
overflow.

4.4 The Adder Subtractor

As its name implies, an adder subtractor can perform two separate functions. From a black-box
perspective, the only difference between this module and an adder is the presence of a control
input to select which function the adder subtractor performs.

Building Block: Adder Subtractor

Nomenclature: | N-bit adder subtractor

Data Input: two N-bit vectors A and B

Data Output: | N-bit vector s

Control: 1-bit f

Status: 1-bit ovf

Behayvior: ifc=0thens=A+ Belses=A—-B

For now, assume the inputs and output of an adder subtractor are 2’s-complement numbers.
Addition of 2’s-complement numbers proceeds like the addition of regular binary numbers.
For now, ignore overflow conditions. The subtraction process for 2’s-complement numbers,
described on page 7, rewrites the subtraction problem A — B as an addition problem A+ (—B).
The caveat is that B must be negated. Since both the addition and the subtraction problem
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require an adder, all that is required is to pass either B or —B to the adder depending on
which operation is to be performed. This idea is presented in Figure 4.11.

A B

Adder $
: Subtractor Complement f £
: SN S
: or Pass :

Cout Cin

< Adder O

S

Figure 4.11: The idea behind the creation of an adder subtractor circuit.

The “Complement or Pass” box in Figure 4.11 produces either B when f = 0 (addition)
or —B when f = 1 (subtraction). The process of complementing B is to flip the bits and to
add 1. To avoid adding a second adder to perform the “add 1”7 operation the adder shown in
Figure 4.11 performs both A + B and the “add 1”. This little piece of magic is accomplished
by hijacking the carry-in to the least significant bit of the full adder chain shown Figure 4.10.
Instead of hardwiring cin shown in Figure 4.11 to 0, cin is connected to f. When f = 1, an
extra 1 will be added to sum. The 2’s-complement of B is computed in two separate steps: The
“Complement or Pass” box negates the bits of B (when f = 1) and the adder adds 1 (when
f =1). Hence, the circuit performs a subtraction when f = 1. When f = 0, the “Complement
or Pass” box will pass through B unchanged, the adder does not add anything extra to the
inputs and, consequently, the circuit performs A + B.

The “Complement or Pass” box is broken down into bit-slices, each bit of B is sent to its
own slice along with the f control bit. If f = 0, then the slice outputs the input B bit. If
f =1, then the slice outputs the complement of the B bit. The truth table is shown below.

b| f |l out
0(0f O
01 1
110 1
1114 O

Solving the truth table yields out = b’ f +bf' = b@® f. Each of these bit-slices is organized
along with the components in Figure 4.11 yielding the circuit diagram in Figure 4.12.

According to page 7, overflow in a 2’s-complement operation occurs when the carry-in and
carry-out to the most significant bit-slice of the addition disagree. In order to build a circuit
to check this condition, the “Adder” box shown in Figure 4.12 must be opened revealing the
chain of full adders as shown in Figure 4.11. The derivation of the truth table and the circuit
realization is left as an exercise at the end of the chapter.
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Figure 4.12: The construction of 4-bit adder subtractor.

4.5 The Comparator

A comparator is a device which determines the relative magnitude of its two inputs.

Building Block: Comparator

Nomenclature: | N-bit comparator

Data Input: two N-bit vectors X and Y

Data Output: | none

Control: none

Status: 1-bit G, L, E

Behavior:
cond EF|L|G
X=Y|1|0]0
X<Y |0 |1]0
X>Y |0 0|1

Comparators are rather unique because they lack data output. That is not to say, compara-
tors do not have any output. Rather, their status outputs are quite useful. The comparator
examines its two N-bit inputs, denoted X and Y, and outputs three bits describing their rel-
ative magnitudes. Each of these three bits, F, L, G, is asserted when X equals Y, X is less
than Y, or X is greater than Y, respectively.

Much like the adder circuit the truth table method is not very useful for designing large
comparators. For example, a 16-bit comparator has two 16-bit inputs, or 32 bits of inputs, for
an astounding 232 rows in the truth table.

The construction of large comparators is based on the method that employed to determine
the relative magnitude of two numbers X and Y, working from the most to least significant
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bits. At each step, compare a bit of X and Y. If the bits are equal, then continue to the next
least significant bit. Otherwise, either X or Y is larger, and the comparison is over.

Large comparators are constructed by stringing together a series of modified 1-bit com-
parators as shown in Figure 4.13. Each bit-slice has as input a pair of bits from X and Y, and
FEin, Gin and Lin signals from a more significant bit-slice. Ein, Lin and Gin tell a bit-slice
the status of the magnitude of X and Y in the bit positions to its left. Each bit-slice has three
bits of output, Fout, Lout, and Gout, communicating the relative magnitude of the inputs so
far.

|

|

I

|

| X y X y X y X y

——<{Ein Eout —={Ein Eout —| Ein Eout | .| Ein Eout —< E
——Lin Lout —={Lin Lout —>{Lin Lout —>{Lin Lout —=1L
——>1Gin Gout | Gin Gout ] Gin Gout =] Gin Gout —<= G

Figure 4.13: The arrangement of the bit-slices for the comparator.

The truth table for a bit-slice of the comparator has five inputs, x,y, Ein, Lin and Gin.
Each bit-slice has three outputs, Eout, Lout and Gout. A portion of the truth table is shown
below.

z |y | FEin| Lin | Gin || Fout | Lout | Gout
00| O 0 0 x x x
0[O0 O 0 1 0 0 1
00| O 1 0 0 1 0
00| O 1 1 x x T
0|0 1 0 0 1 0 0

With five bits of input, the truth table has a total of 32 rows, only five of which are shown
above. Two rows have their outputs set to “don’t cares” because they represent impossible
situations. The inputs in the first row, state that the two numbers have no relative magnitude
relative to one another. The inputs on the fourth row claim that X <Y and X > Y simulta-
neously, an impossible situation. The second row states that it has already been determined
that X > Y, so it does not matter what x and y are because their value cannot effect a decision
that has occurred in a more significant bit-slice. Similarly, the third row states that X <Y,
so the outputs just propagate this fact, regardless of z and y, because the bits of this slice are
less significant than those which decided X < Y. The fifth row states that so far X =Y and
since the bit-slice inputs are equal, the two inputs are still equal. The remainder of the truth
table will be completed in an exercise at the end of the chapter.

The final question that must be answered is “What should Ein, Lin, and Gin, on the far
left of the Figure 4.13, be assigned?” The answer is that the Fin, Lin, Gin inputs to the most
significant bit-slice should be set to 1,0,0 because X and Y are initially assumed to be equal.
From the preceding paragraph, observe that whenever it is determined that X > Y or X <Y,
the comparator bit-slices will not change this fact. Hence, starting the circuit off from any
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other initial condition would cause an irreversible bias. Another way to view this situation is
to realize that any binary number can be considered to have an infinite number of leading Os,
all of which are equal.

4.6 Wire Logic

When designing a digital system which contains a device such as an adder which manipulates
a pair of N-bit inputs representing binary numbers, it is easy to forget that those N bits are
really N separate wires being grouped together. As a digital designer, one has access to each of
these wires and can manipulate them as necessary. This point is important to remember when
designing with the basic building blocks in this chapter because the number of bits representing
a value must match the size of the device input. For example, a 4-bit value cannot be run into
an 8-bit-wide input and expected to work without some consideration of how to handle the
four, remaining bit positions.

For example, assume a 4-bit binary number needs to be added to an 8-bit number. In
order to accommodate the 8-bit number, an 8-bit adder needs to be used. Unfortunately, this
decision creates a problem with the 4-bit operand because the upper four bits of its input
are unoccupied. The solution is to fill in the upper four bits with 0s. This solution is called
padding with Os because just like when padding is placed around an item being shipped in a
container to prevent it from moving around, padding a binary number with Os keeps it aligned
in its word-sized container. Further, the padding operation does not change the value of the
4-bit number.

Padding a 2’s-complement number, a process called sign-extension, is slightly more complex.
Consider the problem of adding or subtracting a 4-bit 2’s-complement number to an 8-bit 2’s-
complement number using an 8-bit adder subtractor. The important point to keep in mind is
that the value of the original, 4-bit, 2’s-complement must be the same as the value of the sign-
extended 8-bit 2’s-complement value. If the 4-bit value were 1111, representing -1 in decimal,
then padding the upper four bits with Os would yield 00001111, which represents +15 in 8-bit
2’s-complement. This approach is not the correct way to proceed because the original value
of -1 was converted into +15 through the sign-extension process. Instead, the value should
have been padded with 1s yielding 11111111, which represents -1 in an 8-bit 2’s-complement
number. To show that any negative 4-bit value padded with 1s retains its value, show that
the values of original and sign-extended numbers are the same when the bits are flipped and
1 is added. Further, any positive 4-bit value should be padded with Os to retain its value. In
general, the 4-bit value needs to be padded with four copies of the most significant bit.

When representing a decimal value, using the base-10 numbering system, multiplication
of a number by 10 can be accomplished by moving all the digits one position to the left and
inserting a 0 in the vacated digit position. With binary-represented values, multiplication by
2 can be accomplished by moving all the bits one position to the left and inserting a 0 in
the vacated position. This manipulation can be handled by padding the least significant bit
position with a 0.

Another useful manipulation is to combine signals together. For example, consider a pair
of 4-bit binary numbers are to be added together, and their 5-bit sum is to be reported. One
alternative might be to pad each of the 4-bit inputs with a 0 and pass them along to a 5-bit
adder. Alternatively, the numbers could be used unmodified as inputs to a 4-bit adder, and
combine the overflow output of the 4-bit adder to the 4-bit sum output, producing a 5-bit result.
Though unconventional, this manipulation is perfectly legal and perfectly correct because, the
overflow signal is just the carry-out from the most significant full adder.
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4.7 Combinations

The devices introduced in this section have limited utility when used by themselves. Their
real potential is realized when combined together. When connecting two components, the
data outputs of one device are typically connected to the data inputs of other. Likewise, the
status outputs are typically connected to control inputs of another device. But how are the
components arranged? A useful starting point is to phrase the solution of the design problem
in terms of a simple algorithm. Algorithms are composed of statements. The algorithms to be
constructed have several different types of statements.

Arithmetic Statements

Arithmetic statements perform the data manipulations required by design problems. An arith-
metic statement consists of two parts, a left-hand side (LHS) and a right-hand side (RHS),
related to one another by an equal sign. The RHS describes the operation and its inputs, while
the LHS represents the variable denoting the output of the arithmetic operation. For example,
the following line of code describes the addition of two values.

x=y+3

The hardware realization of this line of code is an adder with y and 3 as inputs and x as
its output. The algorithm does not specify the width of the x and y signals. These must be
determined from accompanying information.

Conditional Statements

Conditional statements arise in programming languages in the form of if/then/else state-
ments. All conditional statements consist of three parts, the condition to be checked (the if
clause), the statement to be evaluated when the condition is true (the then clause), and the
statement to be evaluated when the condition is false (the else clause).

Typically, the condition being evaluated seeks the relative magnitude of two binary num-
bers. For example, consider checking whether (a<4). This comparison can be realized by
routing a and 4 into the x and y inputs of a comparator and using the L output.

The consequence of the condition is to cause the evaluation either of the then clause or of
the else clause. For now, these clauses will be arithmetic statements. In order to illustrate
the hardware realization of a conditional statement, consider the following example.

if (a<4) then x=y+3 else x=y+7

The solution to the conditional assignment statement utilizes a comparator to determine
the relative magnitudes of a and 4. It is important to note in the solution shown in Figure 4.14
which of the comparator’s inputs is x and y. Of the three status outputs, the L signal is used
as the select on the multiplexer’s inputs. The other two comparator outputs should not be
shown since they are not used.

Each of the arithmetic operations in the algorithm is realized by its own adder. Notice in
Figure 4.14 that both adders compute their values, and the job of the multiplexer is to select
one of the adder outputs based on the results of the L output from the comparator. Since
the LHS of both assignment statements involved the same variable, the output of the mux is
labeled with x. When a<4, then L = 1 and, consequently, the y; output of the mux is routed
to the output. According to the algorithm, when a<4, then x = y + 3. Consequently, y + 3
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a l 4 l adder adder
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Figure 4.14: A combination of components to realize a conditional assignment statement.

should be routed to the y; input of the mux. Now, only y+ 7 is left to be routed to the yy input
of the mux. It is important to annotate the mux inputs with y; and yq in order demonstrate
that the solution works correctly.

The previous solution is more complex than it needs to be. An adder can be removed from
the circuit by noting that in the RHS of both assignments, the variable y has either 3 or 7
added to it. Consequently, a mux can be used to switch through either a 3 or 7 and then to
add this mux’s output to y as shown in Figure 4.15.

a l 4<L
X y
comparator L [—s

Figure 4.15: A better realization of the conditional assignment statement.

Make it a habit to identify ways to reduce the complexity of a circuit whenever possible.
After all, one of the core principles of engineering is always endeavor to do the most with the
least.
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4.8

1.

2.

Exercises

(2 pts. each)Short answer:

a) How many 3:8 decoders would it take to build a 9:512 decoder?
b) How many AND gates are there in a 2V:1 mux?

¢) How many AND gates are there in a 2V : 1 mux which is constructed out of 2:1
muxes?

d) How many AND gates are there in a 2/V:1 mux which is constructed out of 2L:1
muxes, assume that 2%V is an integer multiple of 27?

(6 pts.)Determine the SOP i, expression for each of the three outputs of a bit-slice
of the comparator.

(2 pts.)Show how to connect together four 4-bit comparators to construct a 16-bit
comparator.

(2 pts.)Determine the circuitry for the overflow detection circuit for a 2’s-complement
adder subtractor. See page 7.

(10 pts.)Build a BCD to 7-Segment Display converter using Espresso.

Building Block: BCD to 7-segment

Nomenclature: | BCD to 7-segment converter

Data Input: 4-bit vector D = dsdadidy

Data Output: | 7-bit vector Y = yg... 4190

Control: none

Status: none

Behavior: The output drives a 7-segment display pattern representing
the BCD digit.

A binary coded digit (BCD) is a 4-bit binary number that is constrained to assume the
values of 0-9. That is, 1010 ... 1111 are illegal BCD digits.

A T-segment display is a box with seven inputs and seven output LED bars. Each input
is wired to an LED bar that is illuminated when a 1 is applied to its input. Each of the
seven LED segments is numbered according to the pattern shown on the left-hand side
of Figure 4.16.

The pattern of LEDs to illuminate for each BCD digit is shown on the right-hand side of
Figure 4.16. A BCD to 7-segment converter has four inputs, dsdad;dy and seven outputs
S7...51. Complete the design using Espresso. Make sure to include “Don’t cares” in
the truth table specification.

a) Use Espresso to determine the SOP ,,;, expression for the outputs S;...S;. Un-
derline product terms that are shared. Submit the Espresso source file.

b) Use Espresso to determine the POS i, expression for the outputs S7...S;. Un-
derline sum terms that are shared. Submit the Espresso source file
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L
4

Ll ) | A
7

1 2 3 4 5 6 7 8 9

Figure 4.16: The numbering of the segments in a 7-segment display. The patterns of the BCD
digits.

6. (10 pts.) Build a box which has one 4-bit input called A and one 4-bit output called
T. The output T is the 2’s-complement value of the input A. Use the bit slice paradigm
to solve this problem. That is, create a building block for one bit of the problem then
string four of them together to solve the problem. For the problem at hand this can be
done as follows:

Start at the LSB of A.

If this is the first, least significant, 1, flip all bits to the left.

c¢) If this is not the first 1, leave the bit alone.

d) Move one bit to the left.

e) Goto Step b.

a

b

= D

A bit-slice should communicate whether there has been a 1 to the right, to the more
significant bit. Submit:

e How the above ”algorithm” behaves when presented with the inputs A=1100
e The truth table for one bit slice
e SOP iy expression and circuit diagram for a bit slice.

e The organization of four bit slices to solve the problem

7. (4 pts.) Build a 7:128 decoder using a minimum number of 4:16, 2:4 and 1:2 decoders.
Describe the wiring of the select lines.

8. (4 pts. each) Design a circuit with two 8-bit inputs X,Y, an 8-bit output Z and a
1-bit input sel. Construct a circuit that yields the correct value of Z using only the
basic building blocks presented in this chapter; do NOT show the internal organization
of these building blocks. If a mux is used, denote which input is the yo and which is y;.
If a comparator is used denote which input is X and which is Y. Do not use any AND
or OR gates; it will tempting in the later problems.

a) if (sel==0) then Z = X else Z = Y

b) if (sel==0) then Z = X+Y else Z =

c) if (sel==0) then Z = X+Y else Z = X-Y
d) if (X==0) then Z = X else Z = Y

e) if (X==Y) then Z = X-Y else Z =

f) if (X==Y) then Z = X+Y else Z = X-Y
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9.

10.

g) if (X < Y) then Z = X else Z = Y
h) if (X <= Y) then Z = X else Z = Y

1

) if (X > Y) then Z
j) if (X > Y) then Z

X else Z =Y

X+X else Z = Y+Y

(10 pts.) Build a 4-bit priority encoder.

Building Block: Priority Encoder

Nomenclature: | N-bit priority encoder

Data Input: N-bit vectored D = dn_1 ...d1dy

Data Output: | logy(IV)-bit vector Y = yi00,(n) - - - Y1%0

Control: none

Status: none

Behavior: F =i where i is the highest indexed input which equals 1.
When all inputs equal 0, the output is a “don’t care”.

81

The idea is for the outputs to represent (in binary code) the highest input index which
equals 1. For example, a 4-bit priority encoder with input D = 1010 has inputs d3 = 1
and dyp = 1. Of these two inputs, the index of d3 is greater than the index of dy so the
output, F is equal to 3, or in binary 11. If the input were D = 0111 then F' = 10.

a) Write down the truth table for a 4-bit priority encoder. Hint, the truth table could
be structured so that it contains only five rows by using “don’t cares” on the inputs.

b) An SOP ,,, realization of the circuit.

Building Block: Saturation Adder

Nomenclature: | 4-bit saturation adder
Data Input: 2, 4-bit vectors A, B
Data Output: | 4-bit vector sum
Control: none

Status: none

Behavior:

if (A+B > 15) sum = 15
else sum = A+B

(10 pts.) Build a 4-bit saturation adder. A saturation adder performs normal 4-bit
addition when the resulting sum is less than 15.
saturation adders outputs 15. The following table summarizes.

If the sum is greater than 15, the

Submit a schematic showing the basic building blocks, their data status, and control
interconnections. Show any truth tables used to build glue logic.
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11. (10 pts.) Build a mod-6 adder. The mod-6 adder takes as input two 3-bit (mod 6)

CHAPTER 4. COMBINATIONAL LOGIC BUILDING BLOCKS

numbers and adds them together modulus 6.

Modular arithmetic only operates with a limited portion of the integers. The range of
numbers is {0,1,2,...,m — 1} where m is called the modulus; note there are m different
integers because counting started at 0. For example, when working in mod-6 arithmetic
use the integers {0,1,2,3,4,5}. To solve any addition problem in modular arithmetic,
it is only necessary to perform regular addition with the special rule that the addition
process rolls over from the largest number, m —1 to 0 when the result is larger than m—1.
For example, in mod-6 arithmetic (5+1) mod 6 = 0. The statement “ mod 6” is always
included in the addition problem to indicate to the reader that mod-6 arithmetic is being

performed. Here are a few more examples to help

24+3 mod6=>5
3+3 mod6=0
443 mod6=1
5+5 mod6=4

Nomenclature: | 3-bit mod 6 adder
Data Input: two, 3-bit (mod-6) vectors A, B
Data Output: | 3-bit (mod-6) vector sum
Control: none
Status: none
Behavior:
sum = A+B mod 6

Submit a schematic showing the basic building blocks, their data status, and control
interconnections. Show any truth tables used to build glue logic. Be careful that the

word size of the result is handled correctly.

12. (1pt. each)Convert the following to 2’s-complement assuming a word size of eight bits.

a) -35
b) -128
c) 67

) 128

o,
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13. (1 pt. each) Perform the following operations for the given 2’s-complement numbers.
Assume a word size of eight bits in all cases. Indicate where overflow occurs. If there is
no overflow, convert the result to decimal.

a) 01011101 + 00110111

14.

15.

Qo o
S— N N

@
~

11101011 + 11110001
01011101 + 10101011
10111011 - 11110001
01011101 - 00110111

f) 01011101 - 10101111

(10 pts.) Build a flip box. A flip box is defined by the following input, output, and
behavior definition.

Nomenclature: | 8-bit flip box.

Data Input: 8bit D =dy...dy

Data Output: | 8bit F = fr... fo

Control: 3-bit S = 595150

Status: none

Behavior: The output is the same as the input except for one bit
which is inverted. The index of the inverted bit is given
by S.

The flip box takes the 8-bit data input, flips a single bit identified by S, then sends
the new 8-bit value to the output. For example, if D = 11110000 and S = 010 then
F =11110100. If D = 11110000 and S = 101 then F' = 11010000. The solution should
rely heavily on the basic building blocks.

(10 pts.) Build a box which recognizes some keyboard scancode. When a key is pressed
on a keyboard, the keyboard transmits (among other things) an 8-bit scancode of the
pressed key. Each key has its own scancode listed in Table 4.1. The relationship between
the keys and their scancode is not based on ASCII.

Key | scancode [[ Key [ scancode || Key | scancode || Key [ scancode |
0 4516 1 1646 2 1FE6 3 2616
4 251 5 2F16 6 3616 7 3D
8 3E16 9 4616 A 1C16 B 3216
C 2146 D 2316 E 2416 F 2B
P 4Dqg L 4Big M 3A16 I 431
Table 4.1: IBM 6450225 Keyboard scancodes.
Nomenclature: | scancode classifier
Data Input: 8bit D =d;...dy
Data Output: | IsP, IsL, IsM, IsI, IsS
Control: none
Status: none
Behavior: IsP =1 when D is the scan code for the letter “P”. IsL =1

when D is the scan code for the letter “L”. IsM =1 when
D is the scan code for the letter “M”. IsI =1 when D is
the scan code for the letter “I”.
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16. (10 pts.) Build a box which converts an 8-bit scancode for a hexadecimal digit into a
4-bit hexadecimal values.

Nomenclature: | scancode classifier

Data Input: 8-bit D =d;...dy

Data Output: | 4-bit H = hshshihg

Control: none

Status: none

Behavior: Converts the scancode D, representing a the key of a hex-
adecimal character, into its 4-bit value H.

For example, if D = 2514, the scancode for the ”4” key, then the converter should output
H = 0100,. Assume that the inputs are always legal hexadecimal scancodes.



Chapter 5

Sequential Circuits

The preceding four chapters have focused on combinational circuits, digital systems whose
output depends solely on the input. That is,

output = F(input)

A good example of a combinational circuit is an adder. When the inputs 3 and 2 are applied
to a 3-bit adder, the output is always 5 regardless of what inputs were applied to the circuit in
the past. However, another whole class of circuits remembers events in the past and adjusts
their outputs to reflect these events.

The output of a sequential circuit to a given input depends on what inputs were applied
in the past. A good example of a sequential circuit is a counter: a digital circuit that outputs
a count value, increasing every time a “count up” signal is asserted. Clearly, the same input
(telling the counter to count up) may elicit many different outputs depending on the current
count value. A desktop PC is another good example of a sequential circuit. The same input
(clicking a mouse) may cause an English paper to be saved or an alien invader to be destroyed.
Thus, the relationship between the inputs and outputs of a sequential circuit is more complex
than in a combinational circuit and needs to be described in a fundamentally different way. In
order to relate the inputs of a sequential circuit to the output, the concept of a state variable
needs to be introduced. In some sequential circuits, the state of a system can be thought of as
a memory of the past inputs. In other sequential circuits representing a process, it is best to
regard the state as the current step within that process. The relationship between the output
of a sequential circuit is described as,

output = F(input, state)

A digital circuit which controls a home heating furnace is examined in order to emphasize
the differences between combinational and sequential circuits as well as to clarify the concept
of state.

When the temperature is below 7., the furnace should be on and when the temperature is
above Tse, the furnace should be off. The furnace controller circuit has 1-bit of output, when
it is 0, the furnace turns off and when its output is 1, the furnace turns on. The input to the
furnace controller comes from a temperature sensor which outputs a 0 when the temperature

85
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is below Ts.; and outputs a 1 when the temperature is above Tg;. This behavior is captured
in the graph shown in Figure 5.1.

ON

OFF

Tset

Figure 5.1: A simple furnace controller for a house.

The y-axis of this graph describes the state of the furnace; the furnace is either on or off.
The x-axis describes the temperature of the house. If the temperature is less than T, then
the furnace is on. If the temperature is greater than T, then the furnace is off. It should not
be hard to surmise that the digital circuit required to control the temperature is a NOT gate.
While this may seem like a satisfactory solution to the temperature control problem, it would
perform quite poorly in practice. It is instructive to examine why.

Assume the house was initially cold when the furnace controller was turned on. Clearly, the
controller would turn on the furnace and warm the house up. At some point, the temperature
in the house would warm up to T, causing the controller to turn off the furnace. Because
of the residual heat in the furnace the temperature may overshoot T,.;. Soon however, the
temperature would drop below Ts.; causing the controller to turn the furnace on. This time
however only a small amount of heat would be required to raise the temperature of the house
above Tge;. In a short time, the controller would turn the furnace off. Since little heat had
been added to the house, the house would quickly cool down. Thus, starting a cycle where the
furnace would turn on and off rapidly. While the temperature of the house would be held right
near T, the continuous cycling of the furnace would be annoying to the occupants as well as
introducing wear on the furnace. In addition, the controller would be susceptible to thermal
noise in the environment. Any slight disturbance might cause air to pass over the temperature
sensor causing the furnace to switch on and off.

The shortcomings of the controller are addressed utilizing the principle of hysteresis. The
design is changed to have two temperature sensors called hi-sensor and low-sensor, each having
its own set points Tj; and Tjo,, respectively. From their names it should be clear that T}; >
Ti1ow- The hi-sensor outputs a 1 when the temperature is greater than Tj;; otherwise it outputs
0. The low-sensor outputs a 1 when the temperature is greater than 7j,,,; otherwise it outputs
0. The new controller turns the furnace on when the house temperature drops below Tj,,, and
turns off the furnace when the house temperature rises above Tp,;. When the temperature is
between T},; and T}, , the furnace continues whatever it was doing. The behavior of the new
controller is described by the graph shown in Figure 5.2.

The y-axis of this graph describes the state of the furnace; either it is on or it is off. The
x-axis describes the temperature of the house. If the house temperature is less than Tj,,,, then
the furnace is on. If the house temperature is greater than T};, then the furnace is off. However,
when the house temperature is between T},; and T}, then the behavior of the furnace depends
on what it was doing before the temperature reached this value. If the furnace was on, then
it continues to be on while it passes through the region Tj,, to Tp;. This behavior is the
upper horizontal line with the right-facing arrow in Figure 5.2. If the furnace was off, then it
continues to be off while in the region T}y, to Th;. This behavior is the horizontal line with
the left-facing arrow in Figure 5.2.
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ON

OFF

Tiow Thi

Figure 5.2: A more complex furnace controller for a house.

The graph in Figure 5.2 describes a relation because for a given x value there can be more
than one y = f(x) value. In order to describe the relationship between the input and output,
a variable storing the state of the furnace is needed. The output of the controller is then a
function of the input and the state. Instead of using the graph shown in Figure 5.2 to describe
the behavior of the furnace controller, digital designers utilize state diagrams.

A state diagram is a diagram which describes the behavior of a sequential circuit (a digital
system with states). In a state diagram, each of the states is given a name and placed inside a
circuit. States are then connected together with arcs. States A and B are connected together
with an arc pointing from A to B if there is an input which causes the system to transition
from state A to state B.

The furnace controller has two states, “on” and “off” as shown in Figure 5.3. The arc from
“on” to “off” is labeled Tj; because when T}; is true the furnace is turned off. The “*” in the
off state indicates that it is the reset state; the state the system starts in when first turned on.

T hi
ow

Figure 5.3: A state diagram describing the furnace controller of Figure 5.2.

In general, when building a state diagram, visit each state and identify the transition the
system makes for every possible input combination. For example, “What state should the
controller go into when it is currently in the on state and Ty, is false and T}, is false?” Since
this case means that the temperature is below T}, the furnace should stay in the on state.
Notice that this transition is not shown in Figure 5.3. This is an instance of the general principle
used in the construction of all state diagrams; any input combination not explicitly shown on
the state diagram is assumed to not cause a change of state. This principle helps reduce the
clutter on state diagrams by removing a multitude of arcs beginning and ending in the same
state. The state diagram in Figure 5.3 also exhibits two other properties, completeness and
consistency, necessary for its correctness.

Completeness - The logical OR of the conditions on all the outgoing arcs must equal 1.
This implies that every possible combination of the variables used on the outgoing arcs
has been described. In other words, the transitions out of a state have been completely
specified. For example, state A in Figure 5.4 is complete because = + 2’y + z'y’ =
rx+a'(y+y') = x+2a’ = 1. State B in Figure 5.4 is not complete because x4+ xy+ 'y’ =
x(14+y)+a'y =x+2'y £ 1.
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Unequivocal - The logic AND of the conditions on any pair of arcs must equal 0. This implies
that no pair of arcs include the same input condition. If two arcs included the same input
condition, then this would make the decision of which state to go to next ambiguous or
equivocal. For example, state A in Figure 5.4 is unequivocal because (z)(z'y) = 0, and
(x)(2'y’) = 0, and (2'y)(z'y’) = 0. State B in Figure 5.4 is not unequivocal because
(z)(xy) = zy. If the circuit was in state B and the input (z,y) = (1, 1) arrived, then the
arc labeled x and the arc labeled zy are both true and would both be taken. However,
the circuit may only be in one state at a time, leaving it to decide which true condition
to accept.

Figure 5.4: A portion of a state diagram showing two states. State A is complete and
unequivocal, while state B is neither complete nor unequivocal.

A state diagram in which every state is complete and unequivocal is completely unambigu-
ous. In every state, for any combination of inputs, there is exactly one next state. In order to
build machines whose behavior can be described by state diagrams, a circuit element is needed
which can store information. These circuit elements, called the basic memory elements, are
the sequential circuit analogy of the AND, OR, and NOT gates to combinational logic.

5.1 Basic Memory Elements

The fundamental building blocks of sequential circuits are basic memory elements. A basic
memory element has the ability to store one bit of information. This stored bit is the state
of the basic memory element. The state is always available on an output signal called Q.
There are a variety of basic memory elements; they are differentiated by two fundamental
characteristics:

1. Clock - Basic memory elements are characterized by when they sam-
ple their inputs. Having tight restrictions on the times when a memory
element can sample its inputs greatly simplifies the design of sequen-
tial circuits. A clock input is used to tell the basic memory element
when it should sample its data input(s). A digital clock is a signal
which changes its logic level between 0 and 1 with a fixed frequency.
A basic memory element can be either a latch, clocked latch, or a flip
flop.

a) Latches: A latch continuously samples its inputs. Latches do not
have a clock input.

b) Clocked latches: A clocked latch samples its inputs when the clock
input equals 1. When the clock input equals 0, the clocked latch
does not change the currently stored bit.
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c) Flip flops: A flip flop samples its input when the its clock input
rises. The clock is said to rise when it goes from a logic 0 to a
logic 1. When the clock input is not rising, the flip flop does not
change the currently stored bit.

2. Data - Basic memory elements are characterized by their data inputs
and how the inputs are transformed into the stored bit value; the clock
is not considered a data input. A basic memory element can be either

a D, T, SR, or JK device. D || Q+

a) A D memory element has a single data input called D; the D I
stands for data. When the D memory device samples its input,

it stores this value. 5

b) A T memory element has a single data input called T; the T
stands for toggle. If T = 1 when the input is sampled, then the
T device toggles (flips) its stored bit. If T = 0 when the input is

sampled, then the T device holds its current stored bit.

c) A SR memory element has two data inputs called SR; the S stands

for set and the R for reset. If SR = 00 when the input is sampled,
then the SR device retains its stored bit; the device holds its
stored bit. If SR = 01 when the input is sampled, then the SR
device stores a 0; the device resets its stored bit. If SR = 10
when the input is sampled, then the SR device stores a 1; the
device sets its stored bit. The input of a SR device should never

be set to 11.

d) A JK memory element has two data inputs called J and K. They
have no good acronym, but act very much like S and R, respec-
tively. If JK = 00 when the input is sampled, then the JK device
retains its stored bit; holds. If JK = 01 when the input is sam-
pled, then the JK device stores a 0; resets. If JK = 10 when the
input is sampled, then the JK device stores a 1; sets. If JK =11
when the input is sampled, then the JK device toggles its stored
bit value; toggles.

The information on how a basic memory element processes the input into the stored bit is
summarized in the state tables shown in the margins. A state table is a truth table describing
the changes in state of a sequential circuit. Remember that the state of a basic memory element
is the value of its stored bit. Notice the state column is headed by Q. The “+” indicates the
state to be assumed in the (very) near future.

The type of basic memory element being used in a circuit diagram is indicated by the labels
present on the data inputs and the notation present on the clock input. A latch does not have
a clock input, a clocked latch has the label “clk” on its clock input, while a flip flop’s clock
input has a triangular notch accompanying the label “clk”. Figure 5.5 shows a D latch, D
clocked latch, and a D flip flop. Whenever an input is accompanied by a triangular notch it
means that the input is edge sensitive .

Edge sensitive means that the input responds (or is sensitive) to changes in the logic level
of the input, not the level of the of input. There are two types of edge sensitive inputs, positive
and negative. An input sensitive to positive edges responds to an input transition from logic
0 to 1, a positive change in the logic level. An input sensitive to a negative edge responds to
an input transition from logic 1 to logic 0, a negative change in the logic level. Input which

S | R Q+
0] 0 Q
0 1 0
1 0 1
1 1 x
J | K Q+
0] 0 Q
0 1 0
1 0 1
T | 1 Q
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A B C

Figure 5.5: Different symbols are used to describe when a basic memory element samples its
input. A) D latch. B) D clocked latch. C) D flip flop.

are sensitive to negative edges have a inversion “bubble” placed to the left of the triangular
notch, like that shown in Figure 5.8.

Forming every combination of the two characteristics of basic memory elements yields 12
variations. These variations are organized by listing the data characteristics as column headers
and listing the clock characteristics as rows headers. The resulting table is shown below.

Latch | Clocked Latch | Flip Flop

D
T
SR
JK

While this table encompasses every possible basic memory element, several of them are not
built either because they exhibit non-deterministic behavior or because their implementation
is trivial. Before delving into these issues, a well-behaved basic memory element, the D clocked
latch, is examined.

5.2 The D Clocked Latch

Understanding the behavior of the D clocked latch requires an understanding of its two char-
acteristics, its clock input and its data input. Being a latch, it samples its data inputs when
the clock is 1 and holds its stored bit when the clock is 0. Being a D device, its sampled value
becomes the stored bit. Putting these two characteristics together, a D clocked latch is defined
as a memory element that samples its D input continuously while the clock equals 1, stores
this value as the state, and outputs it on the @) output. In other words, when the clock equals
1, the @ output follows the D inputs. When the clock input is 0, the D clocked latch ignores
the D input and holds the value of its stored bit. Hence, when the clock is 0, the @ output
does not change.

To better understand the behavior of the D clocked latch, examine how the device responds
to inputs through the timing diagram in Figure 5.6.

Initially, the value of @ is given as 0. The initial value of any basic memory element on
power-up is an important issue to be addressed later. For now, assume the D clock latch starts
off in the 0 state. From time=0 to time=10, the clock input is 0. Hence, @ holds its value of 0.
When the clock input goes to logic 1 at time=10, the device immediately starts sampling the
D input, storing this value as the state, and then making the state available as the ) output.
From time=10 to time=40, the clock equals 1 and the @ output follows the D input. From
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clk L
clk : :

time 0 10 20 30 40 50 60 70 80

Figure 5.6: A timing diagram showing the behavior of a D clocked latch. The shaded regions
describe when the latch samples its data inputs.

time=40 to time=70, the clock input is 0, and the device holds its stored state, so ) does not
change regardless of what D is doing.

5.3 The JK Flip Flop

The JK flip flop has two data inputs, an edge sensitive clock input and an output @, repre-
senting the stored bit. The JK flip flop samples its two data inputs on the rising edge of the
clock and transforms the stored bit according to the JK’s state table. At all other times, the
stored bit remains unchanged, hence () remains unchanged.

The behavior of the JK flip flop can be better understood by examining how it responds
to inputs through time in the timing diagram of Figure 5.7. The timing diagram of Figure 5.7
is used to explain its behavior.

Since a flip flop only samples its inputs during the rising edge of the clock input, its J and
K values are examined at times 10, 30, 50, 70. At all other times the stored bit, and hence @,
does not change. The initial value of @ is 0. At time=10, the clock rises, and so the inputs
are sampled, J = 1 and K = 0. According to the state table, this input combination causes
the JK flip flop to sets its stored bit to 1, causing @ to go to 1 at time=10. At the next rising
edge of the clock at time=30, J = 1 and K = 1, and so the JK flip flop toggles its stored bit
value. Since the stored bit was 1 before the clock edge, the stored bit becomes 0 and @ goes
to 0. The reader is invited to verify the remainder of the timing diagram.

5.4 The Negative Edge Triggered D Flip Flop

Often, the polarity of the clock input to a basic memory element is reversed. For a clocked
latch, this means the data input is sampled while the clock equals 0. For a flip flop, this means
the data input is sampled on the negative edge of the clock, when the clock transitions from
a 1 to a 0. The term “negative edge” is used because when drawn on a timing diagram, the
slope of the clock signal is negative. The transition from logic 1 to logic 0 is also referred to
as a falling edge for similar reasons. One indicates the polarity of the clock is inverted by
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set  hold toggle reset

J

J Q

J I
K Q

K K

clk
clk Q
clk
Q —_—

time 0 10 20 30 40 50 60 70 80
Figure 5.7: A timing diagram showing the behavior of a JK flip flop.

placing a “bubble” in front of the clock input on the schematic representation as shown in
Figure 5.8. The bubble is reminiscent of the bubble on the output side of an inverter and
represents inversion of the clock input. Beside the fact that a negative edge-triggered D flip
flop samples its data input on the falling edge of the clock, it acts like a D flip flop in all other
respects.

To better understand the behavior of the negative edge-triggered D flip flop its behavior is
observed when subjected to the inputs shown in Figure 5.8.

D -
D Qo> -

clk

clk ] :
— @ clk Q R
o .

time 0 10 20 30 40 50 60 70 80
Figure 5.8: A timing diagram showing the behavior of a negative edge triggered D flip flop.

The negative edge-triggered D flip flop samples its inputs on the falling edges of the clock,
at times 20, 40, 60, and 80. Only at these times does the stored bit take on the value of
the D input. In other words, when the clock transitions from logic 1 to logic 0, the D input
is sampled, and then asserted on the @) output. At all other times, the Q output remains
unchanged.
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5.5 The SR Latch

The SR latch has two data inputs, no clock input and an output @, representing the stored
bit. The SR latch continuously samples its S and R inputs and sets the stored bit when S = 1,
resets the stored bit when R = 1, and holds its stored bit when S = 0 and R = 0. Since
simultaneously setting and resetting the stored bit makes no sense, the input S =1and R =1
should never be applied to the device. Thus, the stored bit is a “don’t care” for this input
combination.

The behavior of the SR latch can be better understood by examining how it responds to
inputs through time in the timing diagram in Figure 5.9.

s

time 0 10 20 30 40 50 60 70 80
Figure 5.9: A timing diagram showing the behavior of a SR latch.

Initially, at time=0, the SR latch is in a set condition, so its stored bit and consequently
its output @ equals 1. At around time=15, both S and R go to 0, so the stored bit holds a 1.
From time=20 to time=30, the device is being reset, so Q goes to 0. Between time=30 and
time=38, both S and R are 0, so the stored bit holds at 0. The reader can verify the remainder
of the timing diagram. Note that at time=18 and time=32, the SR latch has the same input,
both S and R are 0. However, the output of the device is different because of the past history
of the inputs. In other words, the SR latch remembers what its inputs were in the past.

The SR latch is the only basic memory element whose internal organization will be analyzed.
The goal is to understand how the circuit for a SR latch realizes the state table for a SR device.

Consider the circuit realization of an SR latch given in Figure 5.10. Three important
observations can be made about this figure. First, the SR latch is a simple circuit, sometimes
referred to as cross-coupled NORs for obvious reasons. Second, the circuit contains feedback;
outputs are routed back to the inputs. Feedback is an essential feature of any system which
has memory. Third, the outputs are labeled @ and @’ even though there is no inverter between
the Q and Q' outputs. In most, but not all cases, these outputs will have opposing values.

S Q
R Q

Figure 5.10: The circuit inside a SR latch.
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The behavior of the circuit in Figure 5.10 is governed by the behavior of a NOR gate. Thus,
it makes sense to start with the truth table for a NOR gate.

== ol

B
0
1
0
1

From this truth table, a simple observation should be made: Whenever the input to a NOR
gate equals 1, the output equals 0. This will be referred to as the NOR gate heuristic.

To understand the behavior of the circuit shown in Figure 5.10, start by examining what
happens when S =1 and R = 0. According to the NOR gate heuristic, the output associated
with the top NOR gate will output 0, hence Q' = 0. The Q' output is an input to the bottom
NOR gate. Since both of the bottom NOR gates’ inputs are 0, it outputs 1. Hence, @ = 1.
Thus, when S =1 and R = 0, the ) output is set to 1 and its negation, Q’ is 0.

The analysis of the circuits behavior when S = 0 and R = 1 is identical except the roles of
the top and bottom NOR gates are interchanged. Consequently, the device is reset causing @
to output 0 and its negation, @’ to output 1.

The behavior of the circuit shown in Figure 5.10, is more complicated when S = 0 and
R = 0 because the output depends on what has happened in the past. (See time=18 and
time=32 in Figure 5.9.) Furthermore, the NOR gate heuristic does not help, at least initially,
because neither input is 1.

In order to make some headway into the analysis, start by assuming the SR latch is being
reset (S =0 and R =1), causing @ = 0 and Q' = 1. Figure 5.11A shows what happens in the
instant after the R input is changed to 0. The inputs to the upper NOR gate, labeled TOP,
are both 0. Hence, the output of the upper NOR gate is 1, consistent with the existing value
of Q. This result causes one of the inputs to the lower NOR gate, labeled BOT, to equal 1.
By the NOR gate heuristic, the output of the lower NOR gate goes to 0, consistent with the
existing value of ). Thus, when the inputs to a SR latch which is being reset are changed to
S =0 and R = 0, the output remains unchanged. Now, change this assumption and start by
setting the SR latch and see what happens when the inputs are changed to S =0 and R = 0.

If S=1and R=0, then Q@ =1 and Q' = 0. Figure 5.11B shows what happens in the
instant after S = 0. The inputs to the upper NOR gate, labeled TOP, are 1 and 0. By the
NOR gate heuristic, @' = 0, consistent with its value. The inputs to the lower NOR gate,
labeled BOT, are both 0. Hence, @ = 0, consistent with its existing value of Q.

Bl S,
SECGR N S

A B
Figure 5.11: The analysis of the SR latch when the S and R inputs are both 0.

In either case when S = 0 and R = 0, the outputs @ and Q' retain their values. In other
words, the SR latch holds its value when both inputs are 0.
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5.6 Unimplemented Basic Memory Elements

As mentioned earlier, there are some basic memory elements which are not realized because
they exhibit non-deterministic behavior or their implementation is trivial. The sole example
of the latter is the D latch. Since it is a latch, it is continuously sampling its input. Since it
is a D device, its sampled input is stored and output to ). Hence, the D latch continuously
samples its input and outputs it to Q). The D latch is nothing more than a piece of wire.

A basic memory element which exhibits non-deterministic behavior is the T latch. A T
latch continuously samples its input and updates its stored bits. As a T device, it toggles its
stored bit when it samples T" = 1. Unfortunately, when 7' = 1, a T latch will continuously
toggle its stored bit. The problem is there is no way to know how fast the T latch is toggling
its stored bit and consequently the state of the stored bit after the T input returns to 0 is
undetermined. Hence, a T latch exhibits non-deterministic behavior, behavior that cannot be
determined/predicted beforehand. The only situation when this behavior is beneficial is for a
random number generator.

Any latch or clocked latch which can be forced to continuously toggle its stored bit exhibits
non-deterministic behavior. Consequently, T latches, T clock latches, JK latches, and JK
clocked latches are not commonly constructed. However, T flop flops and JK flips flops are
constructed because they do not continuously sample their inputs, because the clock edge is a
singular event. Hence, these two devices sample their inputs once (per clock edge) and toggle
at most one time (per clock edge).

5.7 Flip Flop Details

There are two issues that have, up till now, been ignored that must now be addressed. The
first involves the possibility of changing the data input of a flip flop at the same time as the
clock input. The second involves the initial value of a basic memory element at power-up. The
first question is now examined.

What would happen if the D input to a D flip flop were changed at the same time the
clock signal changed? Since flip flops are real devices, the answer is that the stored bit will be
undetermined because the sample taken could be prior to, or after, the clock edge. In order
to avoid the problem, manufacturers of flip flops specify a region of time, before and after the
clock edge, during which changes to the data input are prohibited. Changing the data input
in the prohibited region may result in the stored bit being undetermined.

Setup time, denoted Ty,, is the amount of time before the rising edge of the clock when
the data inputs must be stable, graphically illustrated in Figure 5.12. Hold time, denoted T},
is the amount of time after the rising edge of the clock when the data input must be stable.
Finally, propagation delay, denoted 7}, is the amount of time after the rising edge of the clock
required for the new @ value to become valid.

—of T,

flip flop
— data, —
— T i Q
clk P "
— —Pc
= T

Figure 5.12: The significant time intervals for flip flop inputs and outputs.
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Typical values for a D flip flop are shown in the following table. Notice the propagation
delay is longer than the hold time. This characteristic makes it possible to cascade flip flops,
that is, to run the @ output of one flip flop into the data input of a second flip flop. Since
T, > T}, the hold time of the second flip flop will be completed before the first flip flop changes
its value.

Quantity | Time
Teu 20nS
Th 5nS
T, 15nS

Of the three times associated with a flip flop, only the setup time is relevant to the design
of the circuits in this text. The only situation where the setup time is needed is to determine
the maximum clocking frequency of a circuit. When doing so, the clocking frequency must be
set slow enough to allow all the inputs to the flip flops to stabilize prior to clocking them. This
problem will be taken up in a latter chapter. This section will finish by examining the second
problem mentioned at the beginning of this section, namely, what is the value of the stored bit
at power-up?

When a basic memory element is powered-up, it has no previous history and consequently
its stored bit is undefined until one is assigned to the device. To address this problem, manufac-
turers often equip basic memory elements with asynchronous active low set and asynchronous
active low reset inputs, shown at the top and bottom on the D flip flop in Figure 5.13 as S
and R respectively.

Figure 5.13: A D flip flop with asynchronous active low set and asynchronous active low reset
inputs, labeled S and R respectively.

To understand what these inputs do, examine each word in its name in turn. Asynchronous
means that the S and R inputs function without regard to the clock. Active low means that
these inputs elicit their behavior when the signal value equals 0. Set and reset means that
these inputs either set @ = 1 or reset ) = 0. Thus, when R = 1, the output is Q@ = 0 —
regardless of what the clock is doing. Consider the S and R inputs to have the highest priority
of all the inputs to the flip flop. That is, when R is pulled low, the @ output immediately goes
to logic 0, every other input is ignored, and stays there as long as R=0.

Normally, all the asynchronous active low reset lines in a digital system are tied together
in one massive reset net. Pulling this line low then resets all the memory elements in the
circuit giving them a known state. If some of the memory elements should be initialized to 1,
then their asynchronous active low sets are tied together to form a set net. Often, the reset
net (and the set net) is connected to a special output from the system power supply. This
power supply output holds the system in reset until the power supply has reached its operating
output voltage.
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5.8 Exercises

1. (8 pts.)Determine the state table for the circuit in Figure 5.14.

A F

B G

Figure 5.14

2. (8 pts.) Determine the state table for the circuit in Figure 5.15. Which basic memory
element does it act like? Hint, one of the inputs is acting like a clock. Additional hint,
in order to simplify the analysis, replace a portion of the circuit with a component from
this chapter.

A

Y

L Q

Figure 5.15

3. (8 pts.) Complete the timing diagram for the circuit shown in Figure 5.16. Which
basic memory element does this circuit act like?

A

D Q D Q

clk Q ! Q 2
clk clk

D clock latch

D clock latch

| |
1 1
| |
| |
| |
| |
! !
| |
| |
I I
| |
! !
| |
| |
I I
| |
| |

Figure 5.16: A 2-stage sequential circuit.
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4. (15 pts.) Complete the timing diagram for the basic memory elements in Figure 5.17.
The clock cycle is 20 ns. When necessary, assume that @ is initialized to 0 and the output
settles to 0 after a period of rapid toggling.

s Qf— a : : : : :
s R a__ | L L L L 1
— PSS 0 s N O S N
D Q— @ : | : : :
‘ S S S R O  E—
. 7 ‘ ‘ ‘ ‘ ‘
c | | 3 L[ |
o @ : : : :
K Ql |
lb—‘
Q2
J QF— 4
K Q3
Q4
T Q— Q5
Q5
clk ])

Figure 5.17: A variety of basic memory elements and the signals applied to them.

5. (15 pts.) Complete the timing diagram for the basic memory elements in Figure 5.18.
The clock cycle is 20 ns. When necessary, assume that Q is initialized to 0 and the output
settles to 0 after a period of rapid toggling.

- 5o a : : : : :
5 K a_ | L L L] L] |
A | : : ! :
D QI — @ | | : | |
¢ B | \ | \ 3 3
? c : :
o @ ! !
K Q1
»—1
Q2
S Qr— 4
R Q3
Q4
T Q— Q5
Q5
clk ])

Figure 5.18
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6.

(4 pts.) Consider the furnace controller discussed at the beginning of this chapter.
Determine which state the controller should transition into when in a particular state
and given a particular combination of inputs. Fill in the eight entries in the following
table with the next state the system should move into. The next state should be either
ON if the system should transition (or remain in) the ON state, OFF if the system should
transition (or remain in) the OFF state, or X if the input combination is meaningless.

Current State\ Th; 10w H 00 ‘ 01 ‘ 11 ‘ 10

ON
OFF

(8 pts.) Derive the next state equations for each type (D, T, SR, and JK) of basic
memory element. The next state equation is a symbolic equation describing the next
state (QT) as a function of the inputs (D,T,SR, or JK) and state (Q). In order to
determine the next state equations for a a JK memory element, build a 3-variable Kmap
with @, J, and K as the inputs. The entries in the Kmap should be Q. Solving this
Kmap will yield the next state equation. Show all work for full credit.

(16 pts.) Derive the transition list for each type (D, T, SR, and JK) of basic memory
element. A transition list describes the input(s) necessary to elicit a particular change
in state. For example, imagine that a D flip flop output is currently in the 0 state and
it needs to transition to the 1 state after the clock edge. In other words, Q = 0 and
QT = 1. What input would have to be provided on the D input to make this happen?
Clearly, D = 1. This entry is filled in Table 5.1.

Hint, the Kmaps used to determine the next state equations will help in visualizing all
the conditions which elicit a particular change of input. Complete the transition list for
all four memory types. For full credit, show how the entries in the transition list are
determined.

Q- Q"D Q- ||T Q2@ |S|R Q- Q" |J|K

0—0 0—0 0—0 0—0
0—1 1 0—1 0—1 0—1
1—-0 1—0 1—-0 1—0
1—>1 1—-1 1—>1 1—>1

Table 5.1: The transition lists for the four types of basic memory elements.






Chapter 6

Sequential Building Blocks

In order to design complex systems, a suitable abstraction is required for building them. This
requirement stems from the limitations of the human mind to only manage about a dozen items
at once. A complex system containing hundreds of components simply cannot be organized in
one pass. Instead, the components are organized into larger units which compose the system.
Thus, the number of components need to be considered at a development stage is reduced by
an order of complexity. These intermediate units should have a high utility and be modular.
In other words, they should be useful and applicable in a wide variety of design situations.

As an example, consider the design problem of writing a technical document describing the
operation of a pacemaker for a human heart. This process does not begin by thinking about
the spelling of the individual words, instead it makes more sense to first draft an outline.
This outline is an abstraction of the written document, it is a simplified representation of the
final written document. In somewhat the same way as an author ignores spelling issues when
constructing the outline, a designer is not concerned with the operation of AND and OR gates
when designing a digital-signal processing chip.

Clearly, choosing components, or as they are called “basic building blocks,” which are
reusable and have non-overlapping functionality, result in a small number of highly useful
components. The set of available building blocks has largely been determined by the electronics
industry which provides basic blocks as off-the-shelf prepackaged components. These time-
tested components have established themselves over the years as the accepted language of
hardware design. Several sequential logic building blocks are examined, next. The word
“sequential” in their name implies that these building blocks are different from those presented
in Chapter 4 because they have memory.

Like the combinational building blocks shown in Figure 4.1 each of the sequential basic
building blocks have control and data inputs, and status and data outputs. In addition, being
sequential devices, most also have an edge-sensitive clock input. First to be examined is the
most basic sequential basic building block, the register.

101
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6.1 The Register

Building Block: Register

Nomenclature: | N-bit register
Data Input: N-bits vector D =dy_1...d1dg.
Data Output: | N-bit vector @ = gn—_1...q190
Control: 1-bit C'
Status: none
Others: 1-bit edge-sensitive clock. 1-bit asynchronous active low
reset.
reset clk C | D Q" || comment
0 X X | x 0 reset
Behavior: 1 0,1,falling | x | x Q hold
1 rising 0| x Q hold
1 rising 1| D D load

An N-bit register is very much like a wide D flip flop. It samples its N data inputs, denoted
D on the rising edge of the clock input. Depending on the control input, C, the register either
holds its current value when C' = 0 or loads the new value when C' = 1. The stored value of
the register is asserted on its output, denoted ). The columns in the register’s state table are
organized from left to right, from highest priority to lowest priority. Holding the asynchronous
active low reset line to 0 causes the stored value and the outputs to remain at 0 regardless of
the value on any other input; the reset input has priority over all other inputs.

A timing diagram for a 4-bit register is shown in Figure 6.1. The initial value of the register
is arbitrarily set to A;g = 0001,. Since the value of @) is represented using four bits, its value
on the timing diagram is shown as a wide trace. This reflects the fact that @) is composed of
many bits. At time=10, a positive edge of the clock arrives with C' = 1, hence the register
loads D = 516 = 01015, as its new value. The fact that the @) outputs changes slightly after
time=10 is an acknowledgment that the circuit elements inside the register have propagation
delay. The goofy behavior of the C' input around time=20 has no effect on the @ outputs of
the register because the clock is not rising. The rising clock edge at time=30 does not change
the stored value of the register because C' = 0, hence the register holds its stored value. The
change in the @ output at time50 results from the rising clock edge and C' = 1.

An N-bit register is constructed using N, D flip flops. A common error committed by
beginning students, and even some text books, is to AND the clk and C signals together,
sending the AND gate output to the clock input of a D flip flop. This technique is incorrect
because it causes the D flip flops to sample their input when the clk = 1 and C rises, contrary
to the behavior described in the register’s state table. As a general rule, avoid modifying the
clock signal unless it is absolutely necessary.

The correct construction of an N-bit register is shown in Figure 6.2. Two modes are present
for this circuit, corresponding to C' =0 and C = 1. When C = 1, the four multiplexers shown
in Figure 6.2, all route the data input D; to the input of the D flip flop. When a clock edge
arrives, each D; is loaded into its respective flip flop and soon thereafter appears on the @
output.

When C' = 0, the four multiplexers shown in Figure 6.2, all route their data output @); back
to the input of the D flip flop. When a clock edge arrives, each @; is loaded into its respective
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clk :

Q F X 255 é Xé4é

time 0 10 20 30 40 50 60 70 80
Figure 6.1: A timing diagram for a 4-bit register.

dj dy dy dy
Y, Y Y, Y Y, Y Y, Y
sel sel sel sel
f f f f

clk

| | |
q3 92 41 90

Figure 6.2: The internal organization of a 4-bit register.

flip flop and soon thereafter appears on the @ output. Thus, the @) outputs appear to have
held their output value even though the internal D flip flops have loaded a value.

6.2 The Shift Register

A shift register is a register with the additional capability of shifting its stored bits to the left
or to the right. The input, output, and behavior of a shift register are shown in the following

table.
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Building Block: Shift Register

Nomenclature: | N-bit shift register with parallel load
Data Input: N-bits vector D = dn_1 ...d1dp.
Data Output: | N-bit vector Q@ = gn_1---q1q0
Control: 2-bits C = c1¢9
Status: none
Others: 1-bit edge-sensitive clock. 1-bit asynchronous active low
reset.
reset clk C | D QF comment
0 X XX | X 0 reset
1 0,1,falling | xx | x Q hold
Behavior: 1 rising 00 | x Q hold
1 rising 01 | x || @ >>1 || shift right
1 rising 10 | x || @<<1 shift left
1 rising 11 | x D load

If @ = 0110 then shifting @ to the left, denoted Q << 1, yields 1100. The symbol “<<”
denotes a shift left and the “1” describes how many bits to shift. Shifting the original value
of @ to the right by one bit, denoted @ >> 1, yields 0011. The “>>” symbol denotes a shift
right and the “1” describes how many bits.

Shifting is used to examine bits one at a time and in the multiplication and division of
binary numbers. The bits could be examined by looking at the LSB of a shift register as
it shifted its bits successively to the right. Multiplication and division involve a bit more
explanation.

For instance, consider multiplying a 4-bit binary number X = xszsx12¢ by 2. This task is
accomplished by shifting X to the left one bit, yielding X << 1 = z3zzox1200. That is a “0”
is place in the LSB. In order to verify this, write down the decimal equivalent of the shifted
value of X << 1, z3% 2% 4+ 29 %23 + 21 * 22 + 20 * 2'. Now, factor a 2 from each component of
the sum, yielding 2 * (w3 * 23 4+ x9 * 22 + 1 * 21 + 2 * 20). But this is 2 * X.

For each shift left by one bit, each of the exponents in the decimal representation of X
increases by 1, adding a factor of 2 to every term of X which can be factored out. Hence,
every shift left increases X by a factor of 2. These factors accumulate for each shift, so that
shifting X left three bits increases X by a factor of 23 = 8. Shifting can be used to multiply
by constants which are not powers of two by rewriting the constant as the sum of powers
of two. For example, to multiple a binary number X by 10, rewrite 10 as 8 + 2 yielding
10X = (842)X =8X +2X. So 10X is computed by adding together X shifted left by three
bits to X shift left by one bit.

Shifting left may create a result which cannot fit in the prescribed word-size. For example,
if X =129 = 11005 is shifted left one bit in a 4-bit shift register, the result 1000, = 81y does
not represent 24,y because this value cannot fit into four bits. It is easy to see a shift left
results in overflow whenever the MSB equals 1.

Dividing binary numbers by powers of two is accomplished by shifting the bits to the
right. Since it is possible that division by two results in a fraction and combined with the fact
that binary numbers represent integers, some form of rounding must occur. For example, if
X = 579 = 0101 is shifted right by one bit, the result is 0102 = 219. The 1 in the LSB of X
is lost. Hence, shifting to the right divides a number by 2 and rounds down when there is a
fractional result.
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In order to accommodate, the diverse set of situations when shifting can be used, three
types of shifts are available: arithmetic, logical, and circular. Since each of these can occur
to the left or right, then six possible effects are to be considered due to shifting a 4-bit string
x3T2x1To. These are enumerated in the following table.

Left Right
Arithmetic | zox1200 | 3737271
Circular T2X1XpT3 ToT3Ta2x1
Logical Tox1200 Oxzxoxy

All these shifts are characterized by how they “fill in” the void created by the shift. Logical
shifts always fill in the void with a 0 and are used mainly for multiplication and division of
binary numbers.

Circular shifts fill in the void with the bit that “falls off” from the other end of the shift.
For example, circularly shifting 0101 to the right yields 1010 because the 1 that falls off the
LSB is inserted into the void created at the MSB. Circular shifts are useful when each bit of
a register needs to be inspected without destroying the registers contents.

Arithmetic shifts are used mainly to manipulate 2’s-complement numbers. An arithmetic
shift right fills the void with a duplicate of the MSB, maintaining the “sign” of the 4-bit
2’s-complement number. This process is the same as the one governing the sign-extending of
2’s-complement numbers as discussed on page 8. An arithmetic shift left fills in the void with
a 0 because this multiplies both positive and negative quantities by 2.

To better understand its organization the design of a 4-bit circular shift register that holds
its value, circularly shifts its contents to the right, circularly shifts its contents to the left, or
loads an external 4-bit input is examined. Since this circular shift register has four functions, it
requires two bits of control, denoted cicg. The assignment of bit values to the various functions
is arbitrary and defined in the table below. The external 4-bit data input will be denoted D. A
clock signal, clk, indicates when the circular shift register should perform its function. Finally,
the 4-bit output from the circular shift register is denoted Q.

clk C | D Qr comments
0,1 ,falling | x | x Q
rising 00 | x Q hold
rising 01 | x || Q0)|Q >>1 CSR
rising 10 | x || @ <<1]Q(3) CSL
rising 11| D D load

The notation in Q1 column of the state table needs some further explanation. The Q(0)
symbol refers to the LSB of @, the | symbol denotes concatenation, the merging of the bits to
the left and right of the | symbol. Thus, the expression Q(0)|@Q >> 1 means that the LSB of
@ should be “glued” to the most significant three bits of Q.

The circuit for the circular shift register is shown in Figure 6.3 and consists of two major
components, D flip flops and 4:1 muxes.

The organization of the shift register is similar to the register, the difference being the
larger mux. When the 2-bit control signal, denoted by the slash with a 2 through it, is 00, Q;
is routed to the input of each D flip flop. The rising edge of the clock causes each D flip flop
to latch its previous output, causing no change in the outputs. When C' = 01, the data input
to each D flip flop is @, circularly shifted to the right. This movement is denoted by writing
the name of each @ bit on the mux input instead of drawing the lines because otherwise the
diagram quickly becomes messy and confusing. Hence, when on the rising edge of the clock, the
D flip flops latch the shifted value of the outputs, making all the outputs appear to circularly
shift to the right, one bit. The C' = 10 input cause the inputs to circularly shift to the left. The
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dj d, dy dy
qar ai a9 a3
i Bl BN hi
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Figure 6.3: The internal organization of a 4-bit circular shift register.

C = 11 input, sometimes called a parallel load because all four bits are loaded simultaneously,
loads each bit of the external 4-bit input, D, to its respective flip flop.

6.3 The Counter

A counter is a simple but surprisingly versatile piece of hardware. Its behavior is obvious from
its name; it counts up when instructed to do so.

Building Block: Counter
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Nomenclature: | N-bit counter with parallel load
Data Input: N-bits vector D =dy_1...d1dp.
Data Output: | N-bit vector @ = gn_1...9190
Control: 2-bits C' = cicp
Status: none
Others: 1-bit edge-sensitive clock. 1-bit asynchronous active low
reset.
reset clk C | D Q" comment
0 X XX | X 0 reset
1 0,1,falling | xx | x Q hold
Behavior: 1 rising 00 | x Q hold
1 rising 01 | x D load
1 rising 10 | D || @+ 1 || count up
1 rising 11 | x X

When the 2-bit control input equals 10 and a clock edge arrives, the counter counts up.
Since number of bits are limited, the counting will at some point overflow. When this happens,
the count value rolls-over back to 0 and begins counting up again. For example, a 4-bit counter
rolls-over to 0 when it tries to count up at 15. This behavior is similar to the behavior of the
digits of a car’s odometer rolling over from 9 to 0.

A timing diagram for a 4-bit counter is shown in Figure 6.4. The initial value of the counter
was arbitrarily set to Fig = 11102. At time=10, a positive edge of the clock arrives. Since the
C input is equal to 102 at time=10, then the counter counts up to Fig = 11115. The goofy
behavior of the C' input between time=10 and time=20 has no effect on the Q) outputs of the
counter because the clock is not rising. At time=30, the C input is equal to 002 so the counter
holds the current count value. At time=50, the C input is equal 102 so the counter counts
up rolling over to 015. At time=70 the counter counts up to 134 = 00015. At time=90, the
counter loads 716 = 01115. Notice, as in Figure 6.1, the counter timing diagram shows a small
propagation delay for the @) output.

clk%

D | 7

time 0 10 20 30 40 50 60 70 80 90 100
Figure 6.4: A timing diagram for a 4-bit counter.
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The internal organization of a counter is very similar to the structure of the register and
shift register. A set of D flip flops holds the current count value. A mux decides which input
is presented to the D flip flops to be latched up when the positive clock edge arrives. An adder
is used to add 1 to the outputs of the flip flops (current count value). If the overflow output
of the adder is ignored, then the adder has the advantage of rolling over to 0 when the count
value is at the maximum. It is easy to verify that 111...1 + 1 = 000...0. The entire circuit is
shown in Figure 6.5.

ADDER

4
unused $

C 2 i LYY
4x4x1 MUX

Figure 6.5: The internal organization of a 4-bit counter.

Notice, the data inputs to the mux shown in Figure 6.5 all have a slash through them with
the number 4. This notation indicates each of the data inputs is a four bit wide vector, and
consequently, this device is a multibit mux, as discussed on page 69. Additionally, the y3 input
is unused. This inefficiency is the cost of using a generalized building block.

6.4 The Static RAM

Random Access Memory (RAM) is an unfortunate name for a digital circuit that has nothing
random about it. The name “RAM?” originated in the early days of computing when engineers
used cassette tapes as an inexpensive way to store “lots” of data. One of the downfalls of a
cassette tape is the sequential nature of data access. That is, the time to access a piece of
data depends on its position on the tape and the current position of the tape. RAMs do not
suffer from the limits of a sequential access devices; the amount of time to access any random
location is the same.
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In order to understand how RAMs work, you will need to understand a few concepts first,
so let’s start.

A RAM is a device that stores and retrieves bundles of bits, called a word, from an address.
You can envision a RAM as tower of binary numbers like that shown in Figure 6.6. The width
of a RAM is called the word size. In Figure 6.6 the word size is 4-bits. Each set of 4-bits is
called a word. In Figure 6.6, the words are organized in rows. Each word in the RAM has an
address. By convention addressing starts at location 0. In Figure 6.6, the word at address 5
is 0011. Retrieving information from a RAM is called a read operation. Storing information
into a RAM is called a write operation. The terms read/write should invoke the idea that the
RAM is a book or ledger that you are reading with your eyes or writing into it with a pen.

0]0110
1]1010
2| 1101
310010
411000
510001
61101
711111

Figure 6.6: A 8x4 RAM has eight words each containing four bits. The addresses are shown
to the left.

While there is no relationship between the word size and the number of words stored in the
RAM, there is a relationship between the number of words stored in the RAM and the number
of address bits: The number of bits in the address must be sufficient to assign each word a
unique binary address. In Figure 6.6, the addresses range from 0 to 7, hence the address is a
3-bit value. In general, if a RAM has 2"V words, it requires a N bit address so that each word
is assigned a unique/distinct address.

The number of words in a RAM is often described using the metric system notation.

1k 29 kilo
IM 220 mega
1G 230 giga
1T 240 tera

The metric names are only close approximations to the actual, binary values they describe.
For example, 1 kilometer is a 1,000 meters, but 1k bytes of memory is 2!° bytes, or 1024 bytes.
The number of address bits can be determined quickly from the metric abbreviations. For
example, a 256k RAM has 256k = 28 x 210 = 218 words, or 18 bits of address.

A wide variety of random access memories are available to meet the wide variety of ap-
plications in which users need to store data. For situations where data needs to be retained
even though power is removed, non-volatile memories are employed. These memories typically
trade-off access and storage speed for the convenience of non-volatility. Volatile memories,
memories which lose their contents when power is removed, can be either static/dynamic, or
synchronous/asynchronous.

Dynamic memories store data on tiny capacitors and consequently require periodic refresh-
ing in order to retain their values. These versions are typically the highest density memories
available, but the refresh circuitry adds to their complexity. Static memories store data in an
arrangement of transistors which does not need refreshing. Static memories generally faster,
more expensive, and consume less power than their dynamic counterparts.
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Access to a synchronous memory requires a clock and is reminiscent of a flip flop. Asyn-
chronous memories require the control and data signals be applied for certain minimum dura-
tion in order for the operations to take effect.

In order to convey the behavior and utilization of a RAM we consider a popular type of
RAM used in many FPGAs, synchronous static RAM. The input, output, and behavior of a
synchronous static RAM is defined by the following table.

Building Block: RAM

Nomenclature: | NxM RAM (random access memory)
M-bit vector D = dM_1 0oo d1d0
1DESE) Lhoje s loga (N )-bit address A = ajog,(n)—1- - - @100
Data Output: M-bit vector D = dp;—1 .. .d1dg
Control: 1-bit enb (read enable), 1-bit wen (write enable),
Status: none
Others: 1-bit edge sensitive clock
clk enb [wen | A | D;,, | DI, Internal Note
0, 1, falling | x b X X Doyt
. risin 0 0 X X Dy, hold
e risini 1 0 |A| x ram[;ﬂ read
rising 0 1 A | Dy, Doyt ram[A] < D, | write
rising 1 1 A | Dy, D;, ram[A] < D;, | R/W

there are many subtleties burred in this truth table that we will explore in the following
example. Before we delve into this example, take a close look at the column headed with D},
The “+” reference in this column is meant to elicit ideas we explored in Chapter 5, the next
state of a basic memory element. In this case, the “+” in D/ , means that this is the value of
the D,,; signal after the clock edge. A digital designer can implement this behavior using an
output register to hold the value of Dout. This output register is enabled anytime there is a
read operation, enb = 1.

A write operation changes the internal values stored inside the RAM which is not always
explicitly obvious. Hence a “Internal” column was included to make these changes clear.
During write operations, the the RAM location given by the addr input has its contents
modified to the value on Din.

Let’s examine how the truth table for a RAM is applied to the timing diagram shown in
Figure 6.7.



a 'a 8
a LU iyl ipEgEgigl =
& enb / /— ‘_/——-\
é_ wen __/——-\__/ |
addr 101 11 Yo1c 110 111 | Xooo) 001 Y010} oft
| din 1 X 1010 0141 Xo000)0001Y0010)  00f1
dout 0001 1101 10000001} 1101 1010
ram[0] 0110 X 0000
ram[1] 1010 X 0001
| ram[2] 1101 X oojo
g ram[3] 0010 1110 0011
; ram([4] 100)
EE ram[5] 000 |
ram(6] 1101 1010
L ram[7] 1100 X 0111
2 § W s b s o i 1 J 1 ke PP

Figure 6.7: The behavior of a 8x4 RAM whose initial values are given in Figure 6.6. Time is in units of nanoseconds (ns).

time = 3ns Just before the rising edge of the clock enb=1, wen=0 so this is a read operation. Since addr = 1012 = 519 on the
rising edge of the clock, the value contained in ram[5] (which is 0001) is latched into dout after the rising edge of the clock.

time = 4ns Just before the rising edge of the clock enb=0, wen=1 so this is a write operation. Since addr = 0115, = 31y on the
rising edge of the clock, the value of din (which is 1110) is stored in ram[3] after the rising edge of the clock.

time = 12ns Just before the rising edge of the clock enb=1, wen=1 so this is a simultaneous read/write operation. Since addr =
1109 = 619 on the rising edge of the clock, the value of din (which is 1010) is stored in ram|[6] and latched into dout after the rising edge
of the clock.

time = 14ns...18ns During this interval, enb=0, wen=1 on consecutive clock edges so this is a series of write operations. The
address is incremented from 0 to 3, so ram[0] through ram[2] have their values changed on consecutive clocked edges.

WVHY OILLV.LS HH.L 79
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Cases occur when it is necessary to build a larger RAM from several smaller RAMs. RAMs
have two dimensions which can be increased: (1) the word size or (2) the number of words.

Increase the word size of a RAM

Increasing the word size of a RAM is fairly straightforward because each RAM chip gets all
the address lines and handles some portion of the data lines. Structurally, this transformation
is accomplished by placing several RAM chips side-by-side. For example, in order to construct
a 256kx32 RAM from 256kx8 RAM chips, then four, 256kx8 RAM are placed side-by-side as
shown in Figure 6.6.

din 31—24%{ 8 din 23—16)5 8 din 15—8%/ 8 din 7—0%/ 8
din din din din
wen 256kx8 wen 256kx8 wen 256kx8 wen 256kx8
enb enb enb enb
addr —| addr —| addr addr
dout dout dout dout
wen 8 8 8 8
enb $. $.
addr
dout,. ., dout,, .. dout,. . dout,

Figure 6.8: The construction of a 256kx32 RAM from 256kx8 RAM chips.

Each of the four chips have the same address lines and control lines enb, and wen. Thus,
all the RAM chips behave in exactly the same fashion, each handling its own set of eight bits.
Their actions are coordinated by the common address and control signals.

Increase number of words stored in RAM

Combining RAM chips to increase the number of words involves some manipulation of ad-
dresses. For example, consider the problem of using 64kx8 RAM chips to construct a circuit
which behaves like a 256kx8 RAM. Stacking four, 64kx8 RAM chips above one another would

create the required depth of 256k words.

However, each of the 64k RAMs would have 16

address lines, but the 256k RAM being constructed requires 18 address lines. How is this
discrepancy of the extra two address bits resolved? The solution depends on whether you are
performing a read or write operation.
Figure 6.9 shows how a write operation is performed. The 18 bits of address are split into
two components; the lower 16 bits are sent to all four of the 64kx8 RAMs and the upper two
bits are used to decide which of the four 64k RAM chips is being written. A decoder uses the
upper two address bits as select, and routes the wen signal to one of the four 64k RAMs.
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The read operation is not shown in Figure 6.9 and is left as an exercise. The solution
partitions the address in the same way as the write operation. But instead of a decoder, a
multiplexer is used. In order to latch dout, a register also needs to be added to the output.

enbl din 64kx8
8
enb
wen
addr
64kx8 din dout
&——= enb
wen J;
Yol | ®— addr
Y . Y, dout din
—=1din
Yo J; L, 64kx8
3180 Ys ® enb
wen
4 addr
17| |316 64kx8 din dout
enb
addr | wen l J7
a ®— addr
18 15-0 dout din

P
Figure 6.9: An, incomplete 256kx4 RAM from 64kx4 RAM chips.

6.5 Register Transfer

A digital system designed using the datapath and control approach transforms data into some
predetermined sequence. For now, focus on the task of transforming the data performed by the
datapath. The datapath is composed of the basic building blocks discussed in Chapters 4 and 6;
their input, output and behavior is summarized on page 152. Although a gross simplification,
a datapath can be considered as some combinational logic “sandwiched” between registers.
The clock signal to the datapath governs how data moves in the datapath. After the rising
edge of the clock, the register outputs become valid. The output data from the registers flows
into the combinational logic which transforms this input into an output. The outputs of the
combinational logic flow into the register inputs. The next rising edge of the clock causes the
registers to latch these new values. This process then proceeds into the next clock cycle. In
order to understand this discussion, consider the simplified datapath shown in Figure 6.10. In
this datapath, an adder is sandwiched between three registers. Here, the control inputs on all
three registers are assumed to be hardwired to 1, causing them to load on every positive edge.
The inputs A and B to the two registers are provided by some external agent.

When a signal has an unknown value, it is given a shaded regions. Prior to time=0, none
of the registers contains a known value, therefore all their outputs are shaded. Since A = 3
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clk

| A 3><6><1><8><5
B 4><3><5><4><9

At-3X6X1X8X5

y  ERERERE
0 10 20 30 40
Figure 6.10: A simple datapath and the timing diagram describing its behavior.

and B = 4 prior to the positive edge at time=0, the outputs of register A/B equals 3/4 after
the positive edge at time=0, respectively. The slight delay in the A,,; signal becoming valid,
emphasizes how the real outputs of a register exhibit propagation delay. Note, the output of the
B register is not shown because its behavior is similar to A,,; and would clutter up the timing
diagram. Since the outputs of the A and B registers are unknown prior to time=0, causing the
inputs to the adders to be unknown, causing the outputs of the adder to be unknown, causing
the input to the S register to be unknown. Since the inputs to the S register are unknown
when the clock edge arrives at time=0, the outputs of the .S register remain unknown after
that clock edge.

It might seem as if the new outputs of registers A/B available just after the clock edge at
time=0 would be able to propagate to the S-register’s input, allowing it to latch a valid value
on the time=0 clock edge. This is incorrect because all the registers in the datapath latch their
values at exactly the same instant in time and then output their new values. This assertion is
simply a restatement of the observation made on page 96: the propagation delay of a flip flop
should be larger than the hold time in order to allow flip flops to be daisy-chained together.

The A and B signals are changed at time=>5, on a negative edge of the clock, in order to
keep the changes on the register inputs as far away from a positive edge of the clock as possible.

After the rising edge of the clock at time=0, the outputs of the A and B registers become
valid, causing the inputs to the adder to become valid, causing the output to become valid,
causing the input to the S register to become valid. Thus, the S;, signal becomes valid after
the positive clock edge at time=0.

When the positive clock edge at time=10 arrives at the circuit in Figure 6.10, registers
A/B/S latch the values on their inputs, 6/3/7, respectively. The new outputs of A and B are
sent to the adder causing .S;, = 9. This value cannot be latched into the .S register until the
next rising edge of the clock at time=20, because the rising edge at time=10 is long gone.

The positive clock edge at time=20 causes registers A/B/S to latch 1/5/9, respectively.
Once the analysis is started, it is a matter of waiting for a positive clock edge, latch all
the register inputs simultaneously, propagating outputs through the combinational logic, and
waiting for the next positive edge.



6.6. COMBINATIONS 115

6.6 Combinations

The basic building blocks in Chapters 4 and 6 can be combined in interesting ways to produce
complex behavior. The behavior of these digital systems can be described using a programming-
language-like syntax, initially presented in Chapter 4. First, examine the counter, counting
over a subinterval of its possible range.

while(1) {
if (count<10) count += 1;
else count = 3;

}

The while(1) statement means that the statements contained in while-brackets should
be executed forever. In other words, it is a never-ending loop. The if statement checks the
count value. If it is less than 10, count is incremented, otherwise the value is reset back to 3.
The circuit is implemented with a counter to perform the count-up function and a comparator
to perform the magnitude comparison between count and 9. Why 97 Because if the value is
compared against 10, then the count value would have to reach 10 in order for the L output
of the comparator to change, by which time it would be too late to stop the count value from
reaching 10. The completed circuit and a timing diagram is shown in Figure 6.11.

clk . . . . . L

&3
clk counter <>7ﬁ2 L , , , , ,
9$ lcount glue c 5 >< 1 >< 2
comparator Lﬁ%(f
count EX 7 >< 8 >< 9 >< 3 >< 4
VO le 20 '30 40

Figure 6.11: A circuit to count between 3 and 9 and its associated timing diagram.

The L output of the comparator is used because the condition checked is count < 10. This
single-bit output cannot be directly connected to the counter’s 2-bit control input because
there just are not enough bits. The “glue” box shown in Figure 6.11 contains glue-logic, a
combinational logic circuit which interfaces or glues together two pieces of logic. When the
counter’s output is less than 10, L = 1, and the counter is supposed to count up by 1. According
to page 107, this requires the control to be c¢i1¢q = 10.

When the counter’s output is greater than or equal to than 10, L = 0, the counter should
load 3. According to page 107, a load is elicited by asserting c;cqg = 01 on the counter’s control
input. The resulting truth table for the glue logic is shown in the margins. From this table, it
is easy to ascertain that ¢y = L and ¢ = L.

The timing diagram shows the counter starting at 6. Since 6 is less than 10, then L = 1.
When L = 1 is present on the input of the glue logic it will output C' = ¢1¢9 = 10, causing
the counter to count up when the clock input arrives at time=0. Successive clock edges see
the count value increment to 9 at time=20. At this moment, the L output of the comparator
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changes to 0 causing the glue logic box to output C' = ¢1¢9 = 01 telling the counter to load
3 on the next positive clock edge at time=30. When the value of 3 is loaded into the counter
at time=30, the L output of the comparator changes to 1, causing the glue logic box to tell
the counter to count up on the next positive clock edge at time=40. Without a finite state
machine, it is difficult to get a combination of basic building blocks to perform a sequence of
actions. Difficult, but not impossible as the following circuit shows.

Design a circuit which searches the first 100 memory locations of an eight bit wide random
access memory for the smallest value is examined. Assume the RAM is preloaded with data
values, so only the memory needs to be read. The approach reads each value and checks if it is
smaller than the smallest 8-bit value found thus far. This smallest value is stored in a register,
min, which will be assumed as initialized to the largest possible value, 0xFF. The “0x” in front
of “OxFF” is used in many program languages to signify that “FF” is a hexadecimal number.

// assume that min is initialized to OxFF
for(i=0; i<100; i++) {

MBR = RAM[il;

if (MBR < min) MBR = min;

O W N

}

The complete solution is shown in Figure 6.12. When working through a solution, you
should work your way through the algorithm from beginning to the end adding and connecting
hardware as you proceed. Before starting this process a few notes are in order. The variable
MBR, standing for memory buffer register, a generic term applied to a register used to buffer data
operations between a RAM and a datapath. The enb and wen lines on the RAM are connected
to logic levels because we only need to read from the RAM. This is called “hardwiring” the
inputs. This is done when the input never changes, so simplifying the design. This sort of
things occurs often enough in digital design we have a name for it - you may have to hardwire
inputs in your homework solutions.

Line 2: is implemented with a counter and a comparator. The comparator examines the
counter’s output, called ¢, and stops the counter when the count value reaches 99. The truth
table for the glue logic box is given by:

L H counter ‘ MBR register

0 || count up load
1 hold hold

Note, you do not need to look-up the control values for the counter and register. It is easier
to understand if you write the action that the counter and register in the truth table. Only if
you wanted to determine the logic gates inside the glue logic block, you would need to look up
the control word values to perform these actions.

Line 3: is implemented with a RAM and a register. The address of the RAM [i] comes
from the counter, and the data output of the RAM is sent to the data input of a register whose
output is called MBR.

Line 4: is realized with a comparator and a register. The comparator compares the
output of the MBR and the min registers and asserts its L output when MBR is less than min.
This L output runs to the control input of the min register. The data input of the min register
comes from the data output of the MBR register. The control of the MBR register should stop
loading when the count value is greater or equal to 99 - this was completed in the truth table
described in Line 2.

The circuit diagram is shown in Figure 6.12. Since the problem statement did not include
information about the word sizes, we have ignored them in our design.
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Figure 6.12: A circuit to find the smallest value in a RAM. The min register is initialized to

0xFF.
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Exercises

(8 points) Build a 4-bit universal shift register in Table 6.1 using D flip-flops and 8:1
multiplexers.

S2 | S1 | SO || Operation
0| 0] O Hold
0 0 1 Load
0 1 0 ASR
0 1 1 ASL
1 010 LSR
1 0 1 LSL
1 1 0 CSR
1 1 1 CSL

Table 6.1: The truth table for a universal shift register.

(8 pts.) Use a counter and a comparator to implement the following circuits.

a) Show how to modify the counter (by adding some external logic) to implement a
mod-10 counter. A mod-10 counter counts from 0 to 9 and then goes back to 0. It
spends one full clock cycle on each of these count values.

b) Use four mod-10 counters to build a 4-digit decimal counter which counts up from
0 to 9999. Draw a schematic for the 4-digit decimal counter.

(8 pts.) Design a circuit which contains three 8-bit registers X,Y,Z. The behavior of
the circuit is determined by the statement:

if (X > Y) then Z = X+X else Z = Y+Y

The registers are preloaded with values in them. Submit a circuit diagram showing the
building blocks uses, their interconnections and any miscellaneous logic required to make
them operate together.

(8 pts.) Design a circuit which contains three registers X,Y,Z. The behavior of the
circuit is determined by the statements:

1. while (X > 0) {
2. Z = 7+Y;

3. X = X-1;

4. }

The registers are preloaded with values in them. Submit a circuit diagram showing the
building blocks used, their interconnections and any miscellaneous logic required to make
them operate together. The design should use an adder and an adder subtractor plus
some other building blocks. Hint, use the enable inputs of the registers to control when
they latch information.

(8 pts.) Given three 32-bit registers A,B,PC, design a circuit which adds PC and A
(putting the result back into PC) when A is equal to B. Otherwise, add 1 to PC. The
contents of A and B are to remain unchanged.
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6.

10.

11.

12.

13.

(8 pts.) Build a circuit that performs the following:

for(i=0; i<100; i++)
total = total + i;

Use the counter described in this chapter for the ¢ variable; assume that the counter is
initialized to 0. total is stored in a register and its initialized to 0. Use a comparator
to shut down the counter and put the register in hold when the count value reaches a
critical value. Until this critical value is reached the comparator should allow the counter
to count and the register to load.

(8 pts.) Build a circuit that performs the following:

for(i=0; i<100; i++)
total = total + 1;

(8 pts.) Design a circuit that can shift (circular to the right) the contents of register X
by an amount given in register Y. X is stored in the circular shift register described in
this chapter. The solution will require a comparator and a counter.

(8 pts.) Assume a 32kx8 RAM is full of data. Show the hardware required to realize
the following algorithm.

for(i=0; i<32767; i++)
total = total + M[i];

Where M[i] is the 8-bit word stored at address i. Assume the total register is initialized
to 0. The i variable should be the output of a counter. Use a comparator to shut down
the counter and to put the register in hold when the count value reaches a critical value.

(8 pts.) Show how to initialize a 32kx8 RAM in the following manner.

for(i=0; i<32767; i++)
M[i] = i mod 256;

Where the “i mod 256” statement means store the least significant eight bits of the ¢
variable into the RAM.

(5 pts.) Complete the timing diagram in Figure 6.13 for a 4-bit arithmetic shift register.
Use the control setting from the truth table on page 104.

(5 pts.) Complete the timing diagram in Figure 6.14 for a 4-bit counter. Use the
control setting from the truth table on page 107.

(5 pts.) Complete the timing waveforms for Ay, Ag, Q1, Qo based on the circuit diagram
shown in Figure 6.15. Use the truth table on page 102 for the register. Put the decimal
representation of the signals in the timing diagram (like the timing diagram in Figure 6.1
of the textbook).
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clk :

C 1001 ><10 ><11 ><01

time 0 10 20 30 40 50 60 70 80 90 100
Figure 6.13: The timing diagram for a 4-bit arithmetic shift register in Problem 11.

clk -

time 0 10 20 30 40 50 60 70 80 90 100
Figure 6.14: The timing diagram for a 4-bit counter in Problem 12.

14. (4 pts.) The circuit shown in Figure 6.16 generates a Fibonacci sequence, a sequence
starting with 1,1,2,3... The next number in the sequence is the sum of the preceding
two numbers. Complete the timing diagram, assuming the circuit starts with the values
shown. Identify the signal which generates a complete Fibonacci sequence.
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Figure 6.15: The circuit diagram and incomplete timing diagram for Problem 13.

0 10 20 30 40

Figure 6.16: A circuit which generates a Fibonacci sequence.






Chapter 7

Finite State Machines

In Chapter 5 the exploration began with sequential circuits, circuits whose output is a function
of the input and current state, and by examining the basic memory elements. Now, utilization
of these basic memory elements to build general sequential circuit is considered.

The sequential design process starts the same as the combination design process, with a
word statement. From this word statement, a state diagram is created. The logic to control the
transitions between the states is derived directly from the state diagram. In cases where the
finite state machine (FSM) controls a complex system, it may be necessary to build a control
word table to determine the output equations. Otherwise, the output equations are derived
directly from the state diagram. In order to make this discussion more concrete, all the FSMs
to be designed in this chapter have the structure shown in Figure 7.1.

X — Combo Logic

MIE
Q
Combo FF v
Logic
- .
Z JEN—
OE clk

Figure 7.1: The standard structure of a FSM for the current chapter.

Each of the signals X,Y,Q, Z is a vector, consisting of zero or more bits. The X signal is
the input to the FSM from the system being controlled. The Z signal is the output from the
FSM to the system being controlled. The combinational logic circuit generating Z is called
the output equations (OE). The state of the FSM is carried on the @ lines. Each bit of @
is the output of a D flip flop. Thus, if @ is six bits wide, then the FSM has six D flip flops.
The Y signals are called the memory inputs; they are the data inputs to the D flip flops.
The combinational logic circuit generating the Y signals is called the memory input equations

123
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(MIEs). In order to improve the readability of circuit diagrams, from now on, the clock signal
will not be shown. With respect to Figure 7.1, the design of a FSM requires three questions
be answered: What are the MIEs; what are the OEs; and how many D flip flops are required?
These questions are answered by first understanding how to convert a word statement into a
state diagram.

7.1 Word Statement to State Diagram

Since the design of a FSM starts with the conversion of a word statement into a state diagram,
it is imperative to understand what information is captured in the states of a state diagram.

The states of a FSM can be thought of as the history of previous inputs, the operating
modes of a system, or the steps in a process.

A state can be used to capture the history of previous inputs. For example, consider a FSM
controlling a vending machine which dispenses 35¢sodas. The FSM has two bits of inputs, N
and D which equal 1 when a nickel or dime is inserted. It has one bit of output which equals
when to dispense a soda. The states in this FSM would represent how much money has been
deposited so far.

A state can be used to capture the operating mode of a system. For example, the FSM
which controls a furnace in a house might have two states; on or off.

A state can be used to capture which step a process is in. For example, consider a FSM
which controls the movement of milking cows through a chute in order to read their ID tags.
The FSM has two inputs, one which detects if a cow is present in the chute and the other if the
ID tag has been read correctly. The FSM has two outputs, each controlling the position of either
the entrance or exit gates. The FSM has states such as CowPresent, WaitToConfirmRead,
WaitForCowToLeave, etc..

Regardless of what the states represent, the state diagram must be drawn in the same
standardized way. Each state name is drawn inside a circle. One of the states is selected to
be the state the FSM starts in when first powered-up. This state, referred to as the reset
state, is denoted by putting an asterisk inside its circle. The FSM is in exactly one state at
a given time. When the clock edge arrives, the FSM samples its inputs and transitions to a
next state. Outgoing arcs from the state are labeled with the input condition which elicits the
corresponding transition. As mentioned in Chapter 5, the collection of outgoing arcs from a
state should be complete and unequivocal. Complete means that every possible combination of
the variables used on the outgoing arcs has been described. Unequivocal means no ambiguity
in the decision of the next state exists.

7.2 Design Using Ones Hot Encoding

In order to transform an abstract state diagram into a real circuit, the symbolic state names
in the state diagram must be given some binary encoding. When the FSM is in a particular
state, S, the binary coding for S is present on the outputs of the flip flops; @ in Figure 7.1.
Many different ways can be proposed to choose the encoding of states. The two most popular
are dense and one-hot.

A dense encoding minimizes the number of bits used to encode the states. This approach
is a reasonable goal as minimizing the number of bits to encode the states has the effect of
minimizing the number of flip flops in the FSM. According to the arguments made on page 3,
if a state diagram has N states, then each can be assigned a unique binary code using logs(N)
bits. For example, if the vending machine state diagram mentioned earlier had eight states,
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then its FSM designed using a dense encoding of states requires three bits. These three bits
could be arranged in eight different ways, each representing one of the states. Consequently,
its FSM would have three flip flops.

A one-hot encoding assigns one flip flop to each state. When the FSM is in state S, the
flip flop associated with state S outputs 1. Since a FSM can only be in one state at a time,
exactly one flip flop in a one-hot encoded FSM outputs 1 and all the others output 0. The
name “one-hot” refers to the fact that one of the flip flop outputs is “hot” or at a logic 1.

Each encoding technique has its own strength and weakness which should influence the
choice of which to use. The strength of the dense encoding is it minimizes the number of flip
flops in the design. The biggest draw-back of using a dense encoding is it requires a significant
effort to minimize the circuits in the MIEs and OEs. The strength of the one-hot encoding is
the fact that the process of determining the MIEs and OEs is quick and simple. Furthermore,
when compared to a dense encoding, the MIEs and OEs of a one-hot encoded FSM generally
require far less logic. The weakness of the one-hot encoding is it requires far more flip flops
than the dense encoding.

The choice of which encoding boils down to deciding the medium to use to implement the
digital circuit. Field programmable gate arrays (FPGAs) contain a large number of standard
cells which can be configured and interconnected in a variety of ways. A one-hot encoding makes
sense for FPGAs because the automated design tools would have a difficult time optimizing a
dense encoding and there is an abundance of flip flops available. In a custom-designed VLSI
chip, it would make sense to utilize a dense encoding in order to minimize the number of gates
in the implementation, and hence, the size of the resulting circuit. Given the prevalence of
FPGAs, one-hot encoding is the focus for the states of the chapter’s FSMs.

Three steps transform a state diagram into a circuit diagram when using a one-hot encoding
of the states. First, determine the number of flip flops. Second, determine the MIEs. Third,
determine the OEs.

The first step is easy; assign one flip flop to each state. For each state S, label the input of
the flip flop Dg and the output of the flip flop Qgs.

The second step requires the derivation of the MIEs. Since each state gets its own flip flop
and there is one MIE for each flip flop, then there is one MIE for each state. The MIE for
state S should output 1 when the FSM transitions to state S in the next clock cycle. In other
words, the MIE for state S is the answer to the question, “How does the FSM get into state
S7” State S is entered by starting at some state P and meeting the condition ¢ on its arc
leading to state S. The transition arc contributes a term P x ¢ to the MIE for state S. If more
than one arc terminates at state S, then the MIE for S is the logical OR of the terms from
each arc.

For example, in the state diagram shown in Figure 7.2, three arcs terminate at state S.
Consequently, the MIE for state S consists of three terms, one from each of the arcs. The arc
from state A contributes the term Q42'y, the arc from state B contributes Qpgz’, and the arc
from state C' contributes Q¢ (z+y’). Putting all these terms together yields the memory input
equation Dg = Q a2’y + Qpa’ + Qc(x + ).

The third step in the transformation of a state diagram into a circuit diagram requires
the elaboration of the output bits and the definition of their value for each state forming an
output table. From Figure 7.1, see that the OEs are dependent only on the state. Remember
the output from the flip flop associated with S, Qg, equals 1 when the FSM is in state S.
Consequently, if an output Z equals 1 when the FSM is in state .S, then the output equation
for Z will contain the term Qg. Consulting the output table for a FSM reveals a list of states
for which an output Z equals 1. Since the output equals 1 when the FSM is in any of these
states, the output equation for Z is the logical OR of these states.
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Figure 7.2: A state diagram and its FSM.

The furnace controller circuit first introduced in Chapter 5 is revisited to better understand
the concepts illustrated in Figure 7.2.

Word Statement Design a FSM which controls a furnace in order to regulate the temper-
ature in a house. The FSM has two bits of input from thermometer, Tj; and Tj,,. When the
temperature inside the house is greater than the high threshold, then T}; outputs 1; otherwise
it outputs 0. When the temperature inside the house is greater than the low threshold, then
Tiow outputs 1; otherwise it outputs 0. The output from the FSM controls a furnace. When
the FSM outputs a 1, the furnace turns on, warming the house. When the FSM outputs a 0,
the furnace is turned off, causing the house to cool down. A graph of this controller’s behavior
is given in Figure 5.2.

State Diagram The FSM has two bits of input and one bit of output. The state diagram,
shown in Figure 7.3, has an asterisk in the state OFF implying that this state is the reset
state. Hence, for start-up, the furnace controller is set in the OFF state.

Figure 7.3: A state diagram describing the furnace controller.

Circuit Diagram The circuit for the FSM shown in Figure 7.3 requires two flip flops because
it has two states. These flip flops can be called ON and OFF, their inputs D,,, and D,y, and
their outputs Qo and Qofy.
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The MIEs are derived directly from the state diagram. Two arcs terminate at the ON
state, thus the MIE for this state has two terms, Do, = Qoff * T}, + Qon * T},;. Likewise, the
MIE for the OFF state has two terms, Dors = Qon * Thi + Qof s * Tiow-

In order to determine the OEs, an output table is constructed. The table is organized by
listing each output as a column and each state as a row. In the case of the furnace controller,
this construction is quite simple.

State || Furnace
0 off
1 on
ON 1
OFF 0

Since the single output equals 1 when the FSM is in the ON state, Zfurnace = Qon. Putting

all this together yields the complete circuit diagram for the furnace controller FSM as shown
in Figure 7.4.

—d
O
Tlow
Thi 7777777777777777777777777777
& reset
Qorr| Q > D
Z b
—0 Q R
1c|>
J)l
S
QON D
R
[

Figure 7.4: The circuit diagram for the furnace controller.

One final note needs to be made about the circuit diagram in Figure 7.4; its reset configu-
ration. According to the state diagram shown in Figure 7.3, the OFF state is the reset state.
Hence, the reset signal is wired to the asynchronous active low set input of the OFF D flip
flop so that its output goes to logic 1 when the reset is activated. All the other flip flops are
connected to the reset signal through their asynchronous active low reset input so that their
outputs all go to logic 0 on a reset event.

Since the furnace controller operates through time on real inputs its behavior is better
understood in light of applying inputs and examining the outputs in a timing diagram.
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7.3 Timing

Once the FSM is realized, the only way to inspect the behavior of a physical realization is by
applying inputs and observing outputs. A timing diagram is used to examine a sequence of
inputs and the resulting behavior of the FSM. The timing diagram is compared to the state
diagram of the FSM in order to verify that it is operating as originally designed. Before diving
into an example timing diagram, the sequence of events occurring inside the FSM needs to be
understood.

The events occurring in the FSM are referenced to the clock input of the D flip flops inside
the FSM; see Figure 7.5. Since flip flops sample their inputs on the positive edge of the clock,
this point is the beginning of the timing analysis, denoted as Event 1 in Figure 7.5. The
propagation delay of the flip flops means a small delay occurs between the clock edge and
the flip flop outputs, @, becoming valid, Event 2 in Figure 7.5. The propagation delay of the
flip flops is denoted Trpr. In order to maximize the clocking frequency of the FSM, the new
inputs, X, to the FSM should be applied at the same moment that the flip flop outputs are
becoming valid. This event is Event 3 in Figure 7.5. According to Figure 7.1, changing @
and X has two effects, the outputs Z change and the memory inputs Y change. The delay
between the application of the new inputs to the MIE logic and Y is the propagation delay
of the combination logic, denoted Terompo in Figure 7.5. Event 4 denotes the instant in time
when Y becomes valid. When the Y values are valid, a small delay occurs while the flip flops
register their new inputs, denoted Ty,. After this setup time, the FSM is ready for another
clock edge.

J} Apply new X Z valid Y valid

@ ® @
Q valid j ©) ©

- e T =
FF T combo . T su

T

T

Total

Figure 7.5: A timing diagram showing the sequence of events in a FSM. The circled numbers
refer to the sequence of events in a FSM.

The total time between the clock rising and the FSM being ready for another clock edge,
Tiotal = Trr 4+ Teompo + Tsu, s the minimal amount of time between successive clock edges. If
a clock edge arrived sooner than T;,¢q;, then at the very least, the setup time of the flip flops
would be violated. The maximum clocking frequency of a FSM is Fia0 = 1/Ttotal-

Consider the operation of the furnace controller through time. To do this, consult the
memory input equations of the FSM in Figure 7.4. A timing diagram, Figure 7.6, shows a
sequence of inputs applied and the behavior of the circuit. At some time before time=0, the
reset signal is asserted to logic 0. This reset event causes the FSM to go into the OFF
state. The reset signal is released prior to time=0, but the FSM stays in the OFF state
because it has not seen a positive clock edge. At time=0, a positive clock edge arrives while
the temperature is below the low threshold. Hence, the furnace transitions into the ON state.
The furnace starts producing heat, so the temperature in the house increases. At time=15
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the temperature goes above the lower threshold, causing Tj,,, = 1, but the temperature is still
below the higher threshold, so Tp; = 0. The Q,, * T,fbi term in D,,, will equal 1, causing the
FSM to transition into the ON state, during the next clock edge at time=20; not much of
a transition really. Since the furnace remains on, it is still producing heat and increasing the
temperature in the house. At time=25, the high temperature threshold is exceeded causing
Thi = 1 as well as Tjopy = 1. The Qopn * Th; term of Dyry will equal 1, causing the FSM to
transition into the OFF state at the next positive clock edge at time=30. With the furnace
off, the temperature in the house starts to drop. At time=35, the temperature drops below the
high threshold causing T};4p, = 0, but still remains above the low threshold causing Tjo,, = 1.
The Qoff * Tiow term of Dysr equals 1 causing the FSM to transition into the OFF state at
the next clock edge at time=40. Again, this change is not much of a transition because the
FSM stays in the same state. At time=45, the temperature drops below the low threshold.
This change causes the Q,¢f * T}, term of D, to equal 1, causing the FSM to transition to
the ON state at the next clock edge at time=50.
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Figure 7.6: A timing diagram for the furnace controller.

Q OFF

The furnace controller is an example of a FSM whose states capture the operating modes of
a system. The next example, the vending machine, is a FSM whose states capture the history
of the applied inputs.

7.4 Vending Machine

Consider the design of a FSM controlling the operation of a very basic vending machine. This
machine is not a very user-friendly design as it does not give out change.

Word Statement Design a FSM which has two inputs N, D representing a nickel and a
dime, respectively. N =1 when a nickel has been deposited and D = 1 when a dime has been
deposited. N and D never simultaneously are equal to 1 because a nickel and a dime cannot be
simultaneously inserted into the coin slot. The FSM has one output; it equals 1 when 35¢ or
more has been deposited. After dispensing a soda, the FSM should start collecting money for
another soda.

State Diagram Usually two natural choices can be phrased for what the FSM is to remem-
ber.

1. The number of nickels and dimes deposited.

2. The total amount of money deposited so far.
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Clearly, the second approach is going to yield a FSM with far fewer states, fewer flip flops,
and in all likelihood, less logic for the MIEs. Hence, use the second approach and move on
to defining the states. The FSM has eight states: 0¢, 5¢, ... 35¢ each representing the total
amount of money deposited so far. Clearly, O¢ should be the reset state. The complete FSM
is shown in Figure 7.7.

Figure 7.7: The state diagram for the vending machine.

The state diagram is not complete in the sense of the definition given on page 87 because
it does not answer the question, “What happen when no money is deposited?” It should be
obvious that from any state S, the transition arcs labeled N’ or D’ point back to S. In other
words, if no money is deposited, then the total amount of money deposited does not change.
These arcs are omitted from the diagram for the sake of clarity.

Another interesting feature of the state diagram is the arc leaving state 35¢. The arc is not
labeled because this arc represents an unconditional state transition; the condition on the arc
is assumed to be true regardless of the input condition. The FSM spends only one clock cycle
in this state, dispensing a single soda, before transitioning back to state 0Oc¢.

Finally, the FSM is not very user-friendly. A user who deposits 10¢ after depositing 30¢ gets
a soda, but no change. The improvement of the FSM is left for a homework problem.

Circuit Diagram The design process of a FSM consists of three steps, determining the
number of flip flops, determining the MIEs, and determining the OEs. Since the FSM has
eight states, the FSM will have eight flip flops, labeled 0¢, 5¢, ... 35¢.

In writing the MIEs, remember every state S that has an outgoing arc labeled N, also has
an undrawn arc labeled N’. This undrawn arc leaves state S and returns to state S. That is,
if a nickel is not deposited, then the FSM stays in the same state. Likewise every state which
has an outgoing arc labeled D, has an undrawn self arc labeled D’. For example, three arcs
terminate at state 5¢. They are the arc from state Oc¢labeled N and the two arcs leaving from
state 5¢ labeled N’ and D’. Hence the MIE for state 5¢ is D = QoN + QsN’ + Q5D’ which
can be simplified to D5 = QoN + Q5(N’' + D’). The complete list of MIEs is given below.

D35 = Q25D + Q30N + Q30D

Ds3p = Q20D + Q25N + Q3o(N' + D’)
Das = Q15D + Q20N + Qa25(N' + D’)
Dy = Q10D + Q15N + Q20(N' + D’)
Dy5 = Q5D + Q10N + Q15(N' + D')
Dyo = QoD + QsN + Q1o(N' + D’)
D5 = QoN + Qs(N' + D)

Dy = Q35+ Qo(N' + D)

A table listing all the states and their output values could be built, but an inspection of
the word statement reveals that the FSM only outputs 1 when 35¢ has been deposited. Hence,
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the FSM should output 1 when it is in state 35¢. Consequently, Z = Qs5.

7.5 Waits States

When a FSM needs to interface with an entity operating much slower than the FSM or with
an event taking an unknown amount of time to happen, it is often necessary to include wait
states in the FSM. A wait state is exactly what its name implies, a state in which the FSM
waits for some input event to occur.

For example, imagine constructing a FSM to control a vending machine dispenser. The
FSM asserts its dispense output, enabling the vending machine to dispense a bag of chips, until
its photodetector detects a bag of chips passing down the dispense chute. The photodetector
input to the FSM is called photo and the dispense signal is an output from the FSM.

This FSM has a (wait) state with a self loop labeled photo’ in which it asserts the dispense
output. The FSM is waiting for the photo input to go to 1, signaling the bag of chips is being
dispensed. While the photo signal is equal to 0, the FSM asserts the dispense output. The
wait state should have a second transition arc labeled photo which takes the FSM out of the
wait state when photo equals 1.

The next section illustrates how to incorporate wait states into a FSM so that it waits
patiently for cows to make their way through a cattle chute.

7.6 DAISY

Consider the design of a FSM capturing the current step of a process. The task is to design
a high-tech cow-tracking system for a local dairy. The system is called the Dairy Automated
Information SYstem, or DAISY for short. The system operates as follows.

Word Statement Cows have a RFID tag attached to their collars. When the cow passes
through the cattle chute on their way into the barn, a RFID reader reads the unique ID stored
on the RFID tag and logs the cow into the barn. The RFID system outputs a single bit: a
1 means the system has read an RFID tag and has successfully checked a cow back into the
barn; a 0 means the RFID system is either still processing a tag or is not currently reading a
tag.

In order to ensure each cow is scanned, the flow of cows into the barn is controlled by two
gates at either end of the chute. Each gate is controlled by a single bit. To lift a gate, this input
must be held at logic 1; to lower a gate, the input must be held at a logic 0. The sequence of
raising and lowering the gates in order to control the flow of cows is illustrated in Figure 7.8.

In Step 1, gatel is lifted allowing cow A to enter the chute. In Step 2, the DAISY system
has detected cow A is in the chute and closes gatel. The cow waits in the closed off chute
until the RFID reader signals that it has read the tag and checked in cow A. The DAISY
system then raises gate2 and waits for cow A to leave the chute before closing gate2 and
transitioning back to Step 1. If the cow takes more than 30 seconds to leave the chute, then
the cow is “goosed” by a three-second burst of compressed air. The compressed air is released
by an electronically-controlled valve; asserting a 1 on the valve’s input holds the value open,
asserting a 0 closes the air valve. The system then waits another 30 seconds before firing the
air valve again. This process continues until the cow leaves the chute. At any time when the
cow leaves the chute, the cycle is interrupted and the DAISY system transitions back to Step
1.
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gatel gate2
gatel is down gate2 is down
Chute
Step 1 2
gatel is up gate2 is down
Step 2 o o
gatel is down gate2 is down
Step 3 o o
gatel is down gate2 is up
Step 4 o o

Figure 7.8: The sequence of steps to gate a cow through the RFID reader chute.

In order to give DAISY an accurate sense of time, the system is provided with a single
timer with two bits of input and one bit of output. To use this timer, set the timer to either
3 or 30 seconds. By asserting a set command for a single clock cycle, the timer is set. Then,
the control input commanding the timer to count down is continuously applied. The output
of the timer will equal 0 until the set time limit has expired at which times its output will stay
at 1 until a new time interval is set.

Before deriving the state diagram, the inputs and outputs of the DAISY system are cate-
gorized.

System Inputs and Outputs The word statement infers the existence of three inputs.
The RFID scanner sends the DAISY system a single bit which indicates if the cow has been
processed. A second input tells the DAISY system if a cow is in the chute. The final system
input comes from a timer used to inform the DAISY system when 3 or 30 seconds have expired.

RFID Scanner = r ‘ Cow Present = ¢ ‘ Timer Status = ¢

1 - Cow checked in 1 - cow present 1 - timer up
0 - Cow not processed 0 - no cow 0 - timer running

The word statement infers the existence of four, separate outputs. The gates in the DAISY
system are controlled by a single bit each. Assume a logic 1 must be continuously applied to
a gate in order to keep it raised. In order to use the timer, set it to either 3 or 30 seconds by
applying 01 or 10 for a single clock cycle. Then, the timer is run by applying 11. The timer
outputs a status signal (a DAISY input) which should be monitored to tell DAISY when the
set time limit has expired. When the electronic valve controlling the compressed air is open,
air rushes out, goosing the cow.
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Gatel | Gate2 | Timer Control | Air Valve

1 - gate up 1 - gate up 00 Stop timer 0 closed
0 - gate down | 0 - gate down | 01 Set timer to 30 seconds 1 open
10 Set timer to 3 seconds

11 Run timer

State Diagram The process of creating the state diagram for the DAISY system requires
considering movement through the steps of the process required to get a single cow through
the gated chute. Each step in this process then becomes a state or a set of states. Each state
asserts some output to control the devices connected to the DAISY system. Below is one
possible list; other arrangements are possible.

1. Open gatel
. Wait for cow to enter chute
. Close gatel
. Wait for RFID to read cow

. Wait for cow to leave

2

3

4

5. Open gate2
6

7. If 30 seconds has transpired, then “goose” cow; goto Step 6
8. Else if the cow has left, then close gate2; goto Step 1

In order to simplify the labels on the state diagram arcs, the inputs are abbreviated. The
RFID scanner input is represented by the variable r, the cow present input is represented by
the variable ¢, and the timer status input is represented by the variable t.

t’c t

. tc
aitLeave > <

Figure 7.9: The state diagram for the DAISY system.

In some cases the FSM combines a couple of the items in the list together into a single
state. For example, Item 1 and Item 2 on the list, “open gatel” and “wait for cow to enter
chute” are performed in the WaitEnter state. The “Open gatel” action is performed by
asserting the gatel output while in this state. The “Wait for cow” action is performed by the
self arc labeled ¢/. That is, while ¢’ is true (while ¢ = 0), the FSM waits in the WaitEnter
state. After a cow moves into the chute, the system moves into state WaitRead. This state
handles Item 3 and Item 4 in the list, “Close gatel” and “Wait for RFID to read cow”. Closing
the gate is handled by asserting 0 on the gatel output, while waiting for the RFID reader is
handled by the self arc labeled . When the RFID reader has checked in the cow, the FSM
transitions to the state Set30 where a 30-second count-down is set. The FSM then waits for
the timer to time-out or for the cow to leave.
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Timer Status \ Cow Present H Action \ Next State
0 0 close gate2 WaitEnter
0 1 wait WaitLeave
1 0 close gate2 WaitEnter
1 1 goose the cow | Set3, Goose

The combinations of timer status and cow present while in the state WaitLeave deserves
some attention. The state has four combinations of these two inputs which effect the next
state. In order to reason out the consequences of each input combination, structuring the
analysis can be achieved by putting all four combinations of inputs into a truth table. Then,
each combination can be carefully analyzed to determine which next state occurs as well as to
simplify the expressions placed on the arcs.

The pair of transitions which lead to the WaitEnter state can be simplified by noting
that in both cases, the cow present status bit is 0 (denoted by ¢’ on the state diagram).

Memory Input Equations Since the FSM is built with a one-hot encoding of the states,
then the MIEs are formed by answering the question, “How did I get into this state?” The
answer to this question, answered for each state is given below.

DWaitEnter = QWaitEnterC/ + QWaitLeavecl

DWaitRead = QWaitEnterC + QWaitReadr,

DSet30 = QWaitReadr + QGooset

Dw aitLeave = Q5et30 + QWaitLen,vet/C

Dgei3 = QWaitLeavetC

Dgoose = QSetS + QGooset/

Output Equations The output table is shown in Table 7.1. The table is referred to as
the control word table. The term “control” is used because the table describes how the FSM
controls its associated hardware. The term “word” is used to indicate the control is formed
from a collection of bits.

State H Gatel ‘ Gate2 ‘ Timer Control ‘ Air

1 - gate up 1 - gate up 00 Stop timer 0 - closed
0 - gate down | O - gate down | 01 Set timer to 30 seconds | 1 - open
10 Set timer to 3 seconds

11 Run timer

WaitEnter 1 0 00 0
WaitRead 0 0 00 0
Set30 0 0 01 0
WaitLeave 0 1 00 0
Set3 0 0 10 0
Goose 0 0 11 1

Table 7.1: The control word table for the DAISY system.

The output equations are derived by looking at the columns of the control word table. Each
column is given its own output equation by asking, “What states cause this output to go to
17”7 ORing together these states produced the output equation for the corresponding output.
For example, the Gatel output only goes to logic 1 when the FSM is in the WaitEnter state,
hence Zgate1 = QwaitEnter- LThe complete list of output equations is given below.
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ZGatel = QWaitEnter
ZGateQ = QWaitLea'ue
ZTimerl = QSetS + QGoose
ZTimer0 = QSetBO + QGoose
Z iy = QGoose
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7.7 Exercises

1. A finite state machine has been implemented with four flip-flops, two inputs and three
outputs.

a) What are the minimum and maximum number of states in the diagram?

b) What are the minimum and maximum number of transition arrows starting at a
particular state?

¢) What are the minimum and maximum number of transition arrows ending in a
particular state?

d) What are the minimum and maximum number of different binary patterns that are
displayed on the outputs?

2. (20 points) The state assignment for a FSM influences the amount of combinational
logic required in the realization. In the following problem this phenomena is investigated.
Determine the MIEs for the following state table using both the state assignments.

State Table State Assignment 1 State Assignment 2
CS x 0 1 State Qg Ql Q() State Q2 Ql Q()
A A0 | BO A 0 0 0 A 0 0 0
B Cl|F1 B 0 0 1 B 1 1 1
C D,0 | C,0 C 0 1 1 C 0 0 1
D Al | H1 D 0 1 0 D 1 1 0
E F1 | E1 E 1 0 0 E 1 0 1
F GO0 | F,0 F 1 0 1 F 0 1 1
G G,1 | C1 G 1 1 1 G 1 0 0
H D1 | E1 H 1 1 0 H 0 1 0

After obtaining the MIEs for both realizations, determine the cost of each solution ac-
cording to the following formula: C(FSM) = A+ O + 6 «x F'. Where C(F'SM) denotes
the cost of the FSM, A is the cost of the AND gates, O is the cost of the OR gates, and
F' is the number of flip flops. The cost of an AND gate is equal to the number of inputs
to the AND gate. Likewise the cost of an OR gate is equal to the number of inputs.
NOT gates are free. For example, the circuit A’B + ABC’ costs (2+3)+2+0="7.

Submit:

a) Shared steps of the design process.
b

C

d

Derive the MIEs for each of the two realizations.

Determine the cost of each of the two realizations.

)
)
)
) Determine the cost of each of the two realizations using Espresso.

3. (8 pts.) Realize the FSM in the previous problem using a one-hot encoding. Determine
the MIEs and the cost of the circuit using the same metric. It is helpful to convert the
state table into a state diagram.

4. (8 points) Enhance the vending machine discussed in this chapter as follows. Add two
buttons for a beverage selection; regular soda and diet soda, see Figure 7.10. This
machine will have a change dispenser. If the user deposits more than 35¢, the circuit
should send a signal to either the nickel change dispenser or the dime change dispenser,
a single bit sent for one clock cycle to a dispenser will yield a single coin. When the user
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deposits 35¢(or more) the machine gives any change and then waits for one of the two
buttons to be depressed. Depending on the selection, the circuit should send a signal to
either the regular dispenser or the diet dispenser mechanism. The dispenser need only
get a signal for one clock cycle. After the dispensing, go back to the reset state.

SODA
MACHINE

@ regular
@ diet

$ @

change [
E soda

Figure 7.10: A basic vending machine.

(6 pts.) Build a FSM for a car alarm. The input to the FSM comes from a tilt sensor.
The tilt-sensor outputs 1 when the car has been physically displaced by a preset amount,
otherwise the tilt sensor outputs 0. The output of the circuit drives an alarm, when the
alarm output equals 1 the alarm sounds, otherwise the alarm does not sound. Once the
alarm has been set off, it will continue sounding until a reset input equals 1, at which
point the alarm will stop sounding.

Draw the state diagram and from this determine the MIEs and OEs.

(12 pts.) Build a digital circuit which controls an automatic garage door opener. The
garage door circuit has three bits of input. The first input, called button, comes from a
the main control button used to open or close the garage door. When pressed button = 1
otherwise button = 0. The garage door rides in a track, at the top and bottom of of
which are two limit switches. The top limit switch equals 1 when the garage door is all
the way up, otherwise its output equals 0. The bottom limit switch equals 1 when the
garage door is all the way down, otherwise its output equals 0. The garage door circuit
has two bits of output called motor. When motor = 01, the motor moves the door in
a downward motion, closing the door. When motor = 10, the motor moves the door
upward, opening the garage door. When motor = 00, the motor is turned off.

door track

door

Figure 7.11: The garage door and the circuit controlling it.

Construct the FSM assuming a one-hot encoding of the states. Determine the memory
input equations and output equations.
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Ccw

3
Sw .
timer
reset’—
clk LI

Figure 7.12

(8 pts.) Build a digital circuit to control a single traffic light. The circuit has three
outputs, Rlight, Ylight and Glight. When Rlight = 1 the red light illuminates otherwise
the light is off. The same behavior holds true for Ylight and Glight. In order to sequence
the lights, the circuit has three timers, Rtimer, Gtimer and Ytimer. Each timer controls
the length of time that its light should be illuminated. Each timer has one bit of input
and one bit of output. When a timer’s input is 0, the timer is reset. When a timer’s one
bit input is 1, the timer counts down its preset timer interval. When a timer counts all
the way down, its output goes to 1 and stays there until the timer is reset (by applying
an input of 0). The state diagram of the circuit is shown in the figure below. As shown
in figure 7.12 the FSM receives input from the three timers, while the output of the FSM
controls the counters. Complete the following three tasks.

a) Label the arcs of the FSM with the input values (Rt, Yt or Gt) needed to make the
circuit operate correctly.

b) Next, determine what the output should be in each of the states. Instead of writing
the output in each state, the outputs are organized in a separate table. In this table,
each row will contain the output associated with a particular state. Each column
in the table will be associated with one bit of the output.

state || Rlight | Ylight | Glight | Rtimer | Ytimer | Gtimer
0 off 0 off 0 off 0 rst 0 rst 0 rst
1 on 1 on 1 on 1 run 1 run 1 run

R
Y
G

¢) Finally, write the memory input equations and output equations for the traffic light
controller. In order to write the memory input equations use the labels on the state
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transitions from the state diagram. In order to write the output equations use the
output table.

ZRlight =

Ores = ZYlight =
dellow = gGl%ght :
Q — Rtimer —
green ZY timer =

ZGtimer =
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Figure 7.14: The walking gait of the hexapod robot.

Stop Here

left drive

/ wheel
Forward

Forward

right drive

right
sensor

left
sensor

Figure 7.15: A simple line-tracking robot that must cross two intersections.

8. (16 pts.) Build a FSM which make the hexapod robot shown in Figure 7.13 walk

forward.
A B A

B A B

K/

Figure 7.13: A hexapod walking robot.

Each leg of the hexapod robot is moved by two nitinol (Flexinol) wires. At rest, nitinol
wire is straight. When 5 volts (logic 1) is applied to the wire, it bends in a particular
direction. The two wires making up a particular leg are positioned so that they move in
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perpendicular directions. One wire moves a leg up or down and the other will move the
wire forward or backwards. The table below elaborates.

wire | logic 0 | logic 1

wWo down up

w1y forward | backward

The hexapod robot walks by moving three legs in unison; see A and B in Figure 7.13.
The movements of A and B are coordinated so that, at times, the hexapod is balanced
on three legs. A portion of the walking gait is shown in Figure 7.14; note that in this
figure the viewer is looking down at the top of the robot which is moving to the right.
The dotted legs are assumed to be in the air, solid legs are in contact with the ground.

Assume that the legs can move to their correct position in one clock cycle. Define each
state as a position of the legs in Figure 7.14. Draw the state diagram, and determine the
memory input and output equations.

(12 pts.) Build a FSM which makes the simple robot shown in Figure 7.15 move along
(track) the black line crossing two intersections.

The FSM has two inputs, a left sensor, denoted Is, and a right sensor, denoted 7s. These
two sensors look down at the ground. When a sensor sees white, it outputs 0; when it see
black, it outputs 1. The sensors are spaced far enough apart that they can straddle the
black line and see white on either side. The FSM has two outputs, a left motor, denoted
Im and a right motor, denoted rm. A motor rotates when it is sent a 1 and does not
rotate when it is sent a 0. The FSM should constantly check that the robot is straddling
the line. If it is not the FSM should take corrective action by stopping one of the wheels.

Submit the state diagram for the FSM, MIEs and OEs using a one-hot encoding of the
states.

(16 pts.) Make the robot from Problem 9 cross 63 intersections. The problem is
that the number of states will grow to large to handle with a FSM by itself. Additional
hardware, in the form of a counter and comparator, are added to the FSM to address
this problem.

Is

o~ Im
= rmm

63 counter C ;

L X compare y

IS

Figure 7.16: The innards of a intersection counting, line tracking robot.

Assume that the counter is reset to 0 when the circuit is first turned on. The robot must
still track the line, but must also count up once every time it crosses an intersection.
Remember the digital circuit shown in Figure 7.16 is operating much faster than the
robot is crossing intersections.
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The state diagram needs to have wait states while it crosses the intersection, similar to
those in the DAISY example. Assume the counter counts up when the control input is 1
and the clock rises. When the control input is 0, then the counter holds its current count
value.

Submit the state diagram for the FSM, OEs and MIEs for a one-hot encoding of the
states.

11. (24 pts.) Construct a digital circuit to control the operation of a simple washing
machine, see Figure 7.17.

inputs

Digital Circuit O O
outputs

tepid washing

O hot @ cold ''''' drum

start temperature SRS |

Figure 7.17: A humble washing machine with a close-up of the start button and temperature
switch.

To use the simple washing machine set the temperature switch to either hot, tepid or
cold and then press the start button. To build a digital circuit to control the washing of
clothes its necessary to understand the washing cycle. When the start button is pressed
water of the selected temperature pours into the washing drum. The simple washing
machine has two electronically controlled water valves, the hot valve admits hot water
into the washing drum and the cold valve admits cold water. Water continues to pour
into the drum until it fills. There are two water level sensors; the full switch signals
when the drum is full of water and the empty switch signals when the drum is empty.
After the drum is full of water the simple washing machine starts to agitate the clothes.
The simple washing machine has a motor controlled by two bits, which agitates (a rapid
back and forth motion), spins (a rapid rotation in one direction) or does nothing. After
agitating for 15 minutes, the agitation cycle stops and the machine drains its water.
Water leaves the drum through a drain valve. When the drum is emptied of water the
washing machine enters the rinse cycle. The rinse cycle fills the drum with cold water
and agitates for 5 minutes. The rinse cycle concludes by draining the water from the
drum. When the drum is emptied of water the washing machine enters the spin cycle.
This lasts for 5 minutes. The simple washing machine keeps track of time using a 5
minute timer. To use the timer it must first be reset for one clock cycle. After being
reset the timer will count down as long as the timer input is set to run. After 5 minutes
have elapsed the timer output will go to logic 1 and stay there until the timer is reset.
In order to get longer time intervals, the timer should be reset for another 5 minutes and
count down again. When the spin cycle is done, the washing is complete. The inputs
from the washing machine to the digital circuit have the following meaning.
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’ inputs to the digital circuit ‘

start | temperature | empty full timer out

0 off | 00 hot 0 not empty | 0 not full | 0 nothing

1on | 01 cold 1 empty 1 full 1 5 minutes elapsed
10 tepid

The outputs from the digital to the washing machine have the following meaning. The
left most column is explained below.

outputs from the digital circuit ‘

state ||| hot cold motor timer in | drain

0 close | O close | 00 off 00 hold | O close
1 open | 1 open | 01 agitate | 01 reset | 1 open
10 spin 10 run

BET | | | | |

Draw the state diagram for the FSM to control the washing machine. Label the arcs of
the state diagram with the input (or its negation) that causes the transition. Use simple
Boolean expressions on these arcs, for example (start and hot). For each state define the
output using a table similar to the one above. For example, if S1 is a state fill in the
bit values for the o outputs depending on what state S1 is supposed to do. Determine
the memory input equations and output equations assuming a one-hot encoding.

(36 pts.) Construct a digital circuit to control the movement of an elevator in a four-
story building. The elevator will always wait on its current floor until a call button is
pressed; see Figure 7.18. The elevator then moves to the floor that was called. The
elevator then opens its doors and waits for an elevator control button to be pressed. If
a a call to another floor is received before an elevator control button is pressed, then
the elevator closes the doors and goes to the new floor. When a floor is selected on the
elevator control panel, then the door close and the elevator moves to the desired floor.

O] Foor ™)

................... e

>

Q Second ;

Floor ov)

© &

)| sz =] [ i S

elevator control First o

@ Qﬂcg Q Floor ] %

@ Zero

Q Floor

Figure 7.18: The layout of an elevator in a four story tall building.

The inputs to the digital circuit clearly include all the buttons. When a button is pressed
on the elevators control panel two things happen. A 2-bit binary value representing the
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button pressed becomes valid and a 1-bit panel request becomes valid. The panel request
line will remain valid until acknowledged.

When a call button is pressed two things happen. A 2-bit binary value representing
which call button was pressed becomes valid and a 1-bit call request becomes valid. The
call request line will remain valid until acknowledged.

Another input tells the circuit when the elevator is or is not aligned with a floor. For
example, consider an elevator moving from the first to the third floor. Initially, the align
variable is 1. When the elevator starts to move away from the first floor towards the
second, the align variable goes to 0. When the elevator reaches the second floor, the align
variable will go to logic 1 and remain there for a short while (at least several milliseconds)
because there is some slack allowed in what is considered “aligned”. After the elevator
passes the second floor, the align variable goes back to 0 and stays there until the elevator
reaches the third floor.

Here is the table of inputs to the FSM, their abbreviations, to be used in the FSM, and
their meaning.

Control panel floor | Pfloor || 2-bit floor number

Panel request Preq The panel has a valid floor

Call floor Cfloor || 2-bit floor number

Call request Creq The call buttons have a valid floor

Align Align || 0 not aligned 1 Aligned

The outputs from the digital circuit to control the door and the movement of the elevator.

Panel acknowledge | Pack Acknowledge the panel request
Call acknowledge Cack Acknowledge the call request
Door 0 close | 1 open

Motor 00 stop | 01 up 10 down

Submit; an algorithm for the datapath and control unit, the control word table, the
memory input equations, and output equations.

(36 pts.) Construct a digital circuit to control the movement of traffic at the four way
intersection shown in Figure 7.19.

BUSY N
I
I
ped_ | ' g
o Bo_
ressure
fensor 8 QUIET

] [m]

[eMSSOID

Figure 7.19: The layout of a four way intersection.

The circuit comes equipped with timers. The timer has 2 inputs which set the timer to
some preset amount of time or allows the timer to count down. When the timer reaches
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0 then the output of the timer goes to 1. When the timer is not at 0 then the output
equals 1. The specific inputs and behavior are described in the following truth table.

] timer input \ behavior ‘
00 count down
01 set to timer to 5 seconds
10 set to timer to 15 seconds
11 set to timer to 30 seconds

In addition to the timer there are a variety of real world inputs sent to the circuit
described in the following table.

’ Name \ Abbreviation \ Function ‘
E or W Pressure Sensor | EW-PS 1 if 250 Ib. or more on E or W sensor
Ped button ped 1 if any pedestrian crosswalk button

The outputs from the digital circuit to control the lights are:

’ light ‘ Ox red ‘ 10 yellow ‘ 11 green ‘

The main sequence of events is outlined below;

while(1) A

Nlight = Slight = green;

Elight Wlight
wait 30 seconds;

red;

while ((EW-PS == 0) && (ped == 0));
Nlight = Slight = yellow;

wait 5 seconds;

if (ped == 1) {
Nlight = Slight
Elight = Wlight
wait 15 seconds

}

Nlight

Slight

red;
red;

)

red;

Elight = Wlight = green;

wait 15 seconds;
Elight = Wlight
wait 5 seconds;
if (ped == 1) {
Nlight = Slight
Elight = Wlight
wait 15 seconds

L

yellow;

red;
red;

’

Submit; the control unit, the control word table, the memory input equations, and output

equations.






Chapter 8

Datapath and Control

The datapath and control design methodology break the design of digital systems into two
components: a datapath and a control unit. The datapath is responsible for all the data
manipulations and the control unit is responsible for sequencing the actions of the datapath.
The datapath is constructed from the basic building blocks presented in Chapters 4 and 6.
The control unit is a FSM.

A digital system built using the datapath and control design approach is still a digital system
whose inputs and outputs can be categorized using the terminology introduced Figure 4.1.
The digital system shown in this figure is broken down into two components, a datapath and a
control unit. The addition of a clock and a reset signal for the sequential logic elements yields
Figure 8.1.

Status

ok [}
- Control
Control
reset ———— < PStatus | Datapath External
Data inputs |  World
i
Control
Data outputs

Figure 8.1: An abstract digital system constructed from a datapath and a control unit.

The datapath can perform a variety of data transformations. The control unit instructs
the datapath which transformation to perform using a set of control signals called the control
word. An often overlooked portion of the control word are signals provided by the external
world such as the acknowledge signal in a two-line handshake. The datapath provides status
information about the state of its transformation to the control unit. Then, the control unit
uses this information to determine the next instruction to the datapath.

A structured approach to designing digital systems with a datapath and control architecture
is offered next.

147
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8.1 Conversion
Building digital systems using the datapath and control approach is a three-step process.

1. Write an algorithmic description for the solution to the problem.
2. Parse the algorithmic description into datapath building blocks and control states.

3. Define the MIEs and OEs for the control unit.

The algorithmic descriptions are written in a simple programming language. The algorith-
mic description is then transformed into hardware by parsing the algorithm one line at a time.
Each statement in the algorithm introduces additional building blocks in the datapath and
additional states in the control unit. After the algorithm is finished being parsed, the design
is completed by deriving the MIEs and OEs of the FSM.

Word Statement to Algorithm

The programming language used to formalize an algorithmic solution to design problem is a
derivative of the popular C-programming language referred to as mini-C. The mini-C program-
ming language contains four types of statements.

e if (condition) then BODY_1 else BODY_2
e for (i=A; i<B; i+= 1) BODY
e while(condition) BODY

e X = value

The term “BODY?” is a place holder for 0 or more statements. In this way, statements can
be nested. For example, the body of a for loop may contain a for loop, the body of which
may contain a while loop, etc... In addition to statements, the mini-C language also requires
variables to hold the state of the program.

In digital circuit design, the variable types in the mini-C language are limited to be either
binary or 2’s-complement integers. Arrays of these types are common. Limiting the discussion
to integer types is not an inherent limitation of the mini-C language, rather it limits the
discussion to the essential points of the design process. Complex types like floating-point
numbers can be accommodated if the necessary representations and hardware are developed.

No effort is made to explain the process of transforming a word statement into an algorithm;
the process should be a familiar task from writing programs. Rather, consideration of the
transformation of the algorithm into hardware is presented.

Algorithm to Circuit

From an algorithmic statement, its conversion into hardware is desired. The conversion is
accomplished by parsing the algorithm. In computer science, parsing is the process of analyzing
a program for its structure. Here, parsing means analyzing a program line-by-line, sequentially,
from the first line to the last line, to determine its hardware structure. The analysis process
takes a line of code, a mini-C statement, and transforms it into some additional building blocks
in the datapath and some additional states in the control unit. When the parsing is complete,
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the datapath has all the functionality present in the algorithm, and the control unit has all
the control structures present in the algorithm.

As an example of the process, a familiar statement first introduced in Chapter 4, the
if/then/else statement, is transformed.

if (condition) then BODY_1 else BODY_2

When an if/then/else statement is encountered in a program, BODY_1 is executed when
the condition is true. If condition is false, then BODY_2 is executed. BODY_1 and BODY_2
contain 0 or more statements. Typically, the datapath computes the condition using a
comparator. In such a case, the datapath requires a comparator, the output of which is
the status signal shown in Figure 8.2.

While the control unit is in state IfThen, the condition is being evaluated, the status
signal is being communicated to the control unit, and the control unit is deciding whether
to transition to either the BODY; or BODY states. When the clock edge arrives, the
control unit will transition to its next state. The BODY; or BODY, states contain
the entire collection of states derived by parsing all the statements in their respective
bodies. Regardless of which path the control unit takes, both threads return to the Next
state, which is the next statement after the if/then/else statement in the algorithm.

0 b

comparator

Control Datapath

Figure 8.2: The datapath and control components required to realize an if/then/else structure.

for(i=A; i<B; i+=1) BODY

When a for loop is encountered in a program, BODY is executed B-A times and the value of
i is available for use inside BODY. BODY contains zero or more statements. A for statement
requires a counter and a comparator arranged as shown in Figure 8.3. The initial value of
the for loop is the data input to the counter. The output of the counter is the i variable
of the for loop. The i variable is compared to the terminal value of the for loop. The
status of this comparison is passed to the control unit so that the control unit knows to
terminate the for loop when the counter has reached its terminal value.

The control unit sequences the actions of the hardware in the datapath. The execution
of the for loop begins with an initialization of the counter in the Init state. In this
state, the control unit asserts a load signal on the control lines to the counter causing
the counter to be initialized to A. On the next clock edge, the counter loads A and the
control unit transitions to the Comp state. In this state, the control unit does nothing,
giving the comparator time to determine the relative magnitude of i and B, and to assert
its L output to the control unit in the form of a status signal. The control unit uses
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the status signal to either execute the body of the for loop, or to exit the for loop and
proceed with the next instruction after the for loop. The Body state represents the
collection of states derived by parsing all the statements in the body of the for loop. At
the end of the for loop’s body, the control unit enters the Inc state where the control
unit asserts an increment signal on the control lines to the counter. This assertion causes
the counter to count up on the next edge which also causes the control unit to transition
back to the Comp state.

J)A

L’ counter

L

L comparator

Control Datapath

Figure 8.3: The datapath and control components required to realize a for loop.

while(condition) BODY

When a while loop is encountered in a program, Body is executed while the condition is
true. Typically, the datapath computes the condition using a comparator, the output of
which is the status signal shown in Figure 8.4. While the control unit is in state Comp,
the condition is being evaluated, the status signal is being communicated to the control
unit, and the control unit deciding on whether to transition to either the Body or Next
states. The Body state represents the collection of states derived by parsing all the
statements in the body of the while loop.

In some cases the status signal may be determined by some external source. Then, the
status line shown in Figure 8.4 as emanating from the datapath would in fact be sent in
from the external world as shown in Figure 8.1.

Y

comparator

Control Datapath

Figure 8.4: The datapath and control components required to realize a while statement.

X = value
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When an assignment statement is encountered in a program, X is assigned a new value.
This statement is realized by placing a register in the datapath whose input is the value
on the right-hand side of the assignment statement. In order to make the assignment, the
control unit enters the Op state, where it asserts a load signal on the registers control
input. On the next positive edge of the clock, the register loads its value and the control
unit moves on to the Next state.

The size of the register storing X is determined by the range of values required to be
stored in X. In some cases, this size is defined by the word statement; in other cases, the
designer must make a judgment call on a reasonable value range.

Statements like X = X+Y often occur in algorithms. In cases when a variable appears on
both the left-hand and right-hand side of an assignment statement, feedback must be
employed as shown in Figure 8.5. In this case, the output from the X register is added to
Y, the output of the summation is sent to the data input of the X register. The control
unit asserts a load signal on the X register’s control input when it is in the Op state.
Most likely, the control unit would assert a hold signal on the Y register’s control input
while it was in the Op state.

Y
(o0 L
adder
: )
S .
L
Control Datapath

Figure 8.5: The datapath and control components required to realize an assignment statement
of the form X+Y.

What prevents the X register from rapidly adding Y to itself multiple times? The answer
is that the X register will only latch X4Y on the positive edge of the clock. So X+Y
cannot “get into” the X register until the positive clock edge.

A variable often appears on the left-hand side (LHS) of two or more assignment state-
ments. For example, consider a algorithmic description which contains the statements
X=Y and X=Z. In this case, the variable X appears on the LHS of two assignments. Since
the variable X is stored in a register which has a single input, a problem occurs because
there are two different sources for the input. This conflict is resolved by inserting a mux
between the two data sources and the single data input of the X register as shown in
Figure 8.6. The control unit aids in resolving this conflict by asserting control; to route
the correct value to the data input of register X when the control unit asserts a load
signal on the controls line.
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Figure 8.6: The datapath and control components required to resolve the problem of a register
requiring two different sources of data input.

Device Page | Data in Data out Status Control
N:M Decoder 66 1 bit M bits N bits

N:1 Mux 67 N bits 1 bit log,(N) bits
M-bit N:1 Mux 69 N, each M-bits M bits log, (V) bits
N-bit adder 72 2, each N-bits N bits Overflow

N-bit add/sub 73 2, each N-bits N bits Overflow | 1 bit

N-bit comparator 74 2, each N-bits 3 bits

BCD to 7-segment 79 4 bits 7 bits

N-bit priority encoder | 81 N bits log(N)-bits

N-bit register 102 N bits N-bits 1 bit

N-bit shift register 104 N bits N-bits 2 bits

N-bit counter 107 N bits N bits 2 bits

N:M RAM 110 log, (V) bits, M bits | M bit 2 bits

Table 8.1: The list of all the basic building blocks and some of their attributes.

Control Word

After the algorithm is parsed, the design of the datapath is complete and the architecture of
the control unit is complete. The details of the control unit, its MIEs and OEs, remain to be
defined. A one-hot encoding of the states means the MIEs can be derived directly from the
state diagram constituting the control unit. The real work comes from the definition of the
control word for each state.

A control word is a complete listing of the names and meanings of all the control
signals sent from the control unit to the datapath.

Chapters 4 and 6 introduced a variety of basic building blocks with a variety of inputs and
outputs. Table 8.1 summarizes all inputs and outputs from these basic building blocks as well
as their page numbers.

The control word is defined by listing the control inputs and their effects for every basic
building block in the datapath. The control word defines the language of the datapath; any
task performed by the datapath must be expressed using this collection of bits. The list of
control inputs forms the header of the control word table, the table which contains the control
word for every state. The rows of the control word table are labeled with all the state names
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used in the control unit. Then, the actions each state needs to perform in the datapath are
translated into the language defined by the control word.

In order to give this discussion concrete meaning, a circuit from Chapter 6, the minimum
search problem, is reexamined.

8.2 Minimum Search

The minimum search problem on page 116 is reexamined for two reasons. First, the solution
presented was unable to initialize the min register. Second, the problem will now be solved
using the datapath and control approach, allowing the comparison of two different control
approaches. All control decisions in a datapath and control circuit are centralized in the control
unit, whereas the control strategy used in the Chapter 6 solution was distributed throughout
the circuit.

Design a digital circuit that looks for the smallest 8-bit integer in a 128x8 RAM.
The numbers are stored at addresses 0...99. Assume the RAM is preloaded with
data.

The strategy used to solve this problem is the same as the strategy outlined on page 116:
Compare successive elements of the RAM to the smallest value found so far, and update the
smallest value if the RAM value is smaller. The caveat of the strategy is to initialize the value
of the register holding the minimum value found so far to the largest possible 8-bit value, OxFF.

1. min = OxFF; // Set the min reg to largest 8-bit value
2 for (i=0; i<100; i++) { // Search through the entire array

3 MBR=RAM[i]; // Read an 8-bit value from the RAM

4. if (MBR<min) then // If MBR is smaller than min

5 min = MBR; //  then set min to the smallest value
6. } // end for

Now the translation of this algorithm to hardware proceeds by examining line-by-line the
algorithm and transforming each statement into some datapath and control.

Line 1. The min register is initialized to the largest 8-bit integer, in this case hexadecimal
FF. When this assignment statement is parsed according to Figure 8.5, one state is added to the
control unit and a register to the datapath. The state is called InitMin. Other initialization
states in the control unit are to be expected and each should be given a distinct name. An 8-bit
register, labeled min, is placed in the datapath. Since min is on the LHS of two assignment
statements (Line 1 and Line 5), place a 8-bit 2:1 mux in front of the min register; see Figure 8.6.
When the control unit is in the InitMin state, it asserts a load signal on the min register’s
control input and should route 0xFF through the min register’s mux.

Line 2. The for loop is used to search every address in the RAM looking for the smallest
value. When this for loop is parsed according to Figure 8.3, three states are added to the
control unit and a counter and comparator is added to the datapath. In Figure 8.7, the Initl,
CompC, Inc states correspond to the Init, Comp, Inc in Figure 8.3, respectively. The
body of the for loop is composed of Lines 3-5. The Body state of the for loop in Figure 8.3 is
composed of the Read, CompM, NewMin states in Figure 8.7. The output of the counter
is sent to a comparator whose output, labeled IC, is sent to the control unit so, allowing the
for loop to acknowledge when completed.
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When the control unit is in the InitI state, it asserts a load signal on the counter’s control
input. In the CompC state, the control unit should have the counter hold its value. In the
Inc state, the control unit should assert an increment signal on the counter’s control input.

Line 3. In this line, the RAM is read and its value is stored in the MBR. When this
assignment statement is parsed according to Figure 8.5, one state is added to the control unit,
and a register and RAM is added to the datapath. The state Read in Figure 8.7 corresponds
to the state OP in Figure 8.5. Since the expression RAM[i] is on the RHS of the assignment
statement, the RAM provides the data to the MBR register. When the control unit is in the
Read state, the enb signal is asserted on the RAM’s control input and a load signal is asserted
on the MBR register’s control input.

Line 4. The output of MBR is compared to min. When the if/then/else statement is
parsed according to Figure 8.2, one state is added to the control unit and a comparator is
added to the datapath. The state CompM in Figure 8.7 plays the role of the state IfThen
in Figure 8.2. This state uses the output of the comparator labeled MC to determine which
state to enter next. If min is less than the MBR, MC=1 and the control unit goes to the state
NewMin in the next clock cycle. Otherwise, the control goes to the state Inc.

Line 5. The line of code is only executed if MBR is less than min. When the assignment
statement is parsed according to Figure 8.5, one state is added to the control unit and no
additional hardware to the datapath because the min and MBR registers are already in the
datapath. The state NewMin in Figure 8.7 corresponds to the state OP in Figure 8.5. When
the control unit is in the NewMin state, a load signal is asserted on the min registers control
input and routes MBR through the min register’s mux.

Line 6. The line of code halts the machine. When the while loop is parsed, one state
is added to the control unit and no hardware to the datapath. The Done state in Figure 8.7
corresponds to the state Comp in Figure 8.4. The unconditional self arc to/from the Done
state halts a FSM when it gets to the Done state. However, in most cases the circuit will
restart its primary operation from the beginning when it has completed one iteration.
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Figure 8.7: The datapath and control components required to implement the minimum search
circuit.

The dotted lines representing the status information are generated in the datapath by
comparators and sent to the control unit which uses them to decide which course of action
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State enb Min Reg Min mux Counter | MBR Reg
0 0 hold 0 load FF 00 hold 0 hold
1 read 1 load 1 load RAM | 01 load 1 load
10 count
11 reset
InitMin 0 1 0 00 0
Initl 0 0 X 01 0
CompC 0 0 X 00 0
Read 1 0 b 00 1
CompM 0 0 X 00 0
NewMin 0 1 1 01 0
Inc 0 0 X 10 0
Done 0 0 b 00 0

Table 8.2: The control word for the minimum search circuit and its values for each state.

to take next. The dashed lines represent control information generated by the control unit
to instruct the datapath which actions to perform. The control lines should not be drawn on
the datapath and control circuits as they unnecessarily clutter the figure and do not add any
useful information. Since the basic building blocks are assumed to be controlled by the control
unit, assume these connections are present even when they are not drawn. Since the control
unit handles all processing of the status bits, the status outputs from all the comparators in
the datapath must be sent to the datapath. Since it is implicit that the status bits are sent
to the control unit, they do not need to be drawn all the way to the control unit. Draw just
enough of the status output in order to fit the name of the status signal.

Since a one-hot encoding of the states is employed, MIEs are determined for the control
unit by inspection as shown below.

Dy =0
Drr=Qrnm
Dece = Qrr +Qr
DR:QCC*IC
Dey = Qr

Dp = Qcc *IC’
Dnm = Qem x MC
D; =Qnm + Qom x MC'

The control word for the circuit is determined by listing every control input in the datapath
along with its associated action. In Figure 8.7, the collection of dashed lines forms the control
word. It is a good idea to form the control word while parsing the algorithm’s statements. By
using the table on page 152, the control input to each type of box can be determined.

The header of Table 8.2 is the control word table for the minimum search circuit. Each state
is listed as a row in the control word table. The values filled in for each state are determined
by examining the actions each state performs and is discussed next.

Determining the values of the control-word bits for each state requires understanding what
is supposed to happen in each state. For example, parsing Line 1 resulted in adding the
NewMin state. In this state, the min register was to be assigned the value 0xFF. The
datapath can accomplish this by asserting a “load” to min register and a “load FF” on the
Min mux control lines. All the other basic building blocks in the datapath must be inactive,
thus the RAM is “turned off” and the counter and MBR are told to “hold” their values. Closely
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reading how each line of code is parsed should clearly indicate which control bits need to be
set in the remaining states of the control unit.

A note about “don’t cares” is appropriate at this point. As a general rule, never set
the control input of a sequential device to “don’t care.” The reason is fairly obvious; since
sequential devices have memory, the effects of a spurious operation will be remembered and
may result in an erroneous operation later on. On the other hand, a combinational logic block
like an mux can have its control input set to “don’t care” when its output is not being used
because it will not remember this decision in the future. For example, when the min register is
holding its value, the Min mux’s control input is set to a “don’t care.” In general, always set a
combinational logic device’s control input to “don’t care” whenever possible to communicate
the associated device’s output is not being used. While this will not help reduce the complexity
of the control unit when implemented with a one-hot encoding, it may be helpful under other
encoding schemes. Once the control word is defined for all the states, it is time to determine
the output equations for the FSM which is the control unit.

One output equation occurs for each bit in the control word table. For example, there are
eight bits of control in the min search control. While seven bits of control may seem correct,
remember the counter requires two bits of control, giving eight, total control bits. The output
equation for a control bit is the OR of the states which cause the output to equal 1. For
example, the ENB output of the control unit equals 1 when the control unit is in the Read
state. Hence, Zpnyp = Qr. All the OEs are summarized in the list below.

ZpnB = QR

Zrm = Qim + Qnm
Zum =QNm

Zc1 = Qr
Zco=Qrr+Qnm
ZumBR = QR

In order to understand how the elements of the minimum search circuit operate together
to complete its task, examine its behavior through time using a sequence of modified circuit
diagrams. The state diagram representation of the control unit is replaced with the circuit
diagram representation of the one-hot encoded control unit. When a component is active it
is shaded. For example, when a local signal is asserted on the min register’s control input,
the min register is shaded. When a control or status line is active, it is drawn as a solid line
instead of a dotted or dashed line. Each diagram represents the circuit in one state; the name
of the state is written underneath the circuit diagram.

The operation of the minimum search circuit starts at time=1 in the InitMin state, shown
in the upper left of Figure 8.8. The flip flop labeled IM ( InitMin) is shaded grey because
its output, Qrps = 1; it is the current state. The control word for the InitMin state asserts
“load” on the min register’ control input and “route FF” to the min mux. Hence, these control
signals are drawn as solid lines. The MIE, D;; = Qras, means that when the clock edge arrives,
the control unit transitions to the InitlI state and the min register will latch the value FF.

When the control unit is in the Initl state, Q;; = 1 causes the OEs to assert a “load”
on the counter’s control input. The control unit transitions into state CompC, where the
IC output of the comparator is used to send the control unit to the Read state. During this
state, the counter is used as the address to the RAM, which sends its data output to the MBR.
When the positive edge of the clock arrives, the MBR latches its value and the control unit
transitions into the CompM state. While in this state, the MC output of the comparator is
being used by the control unit to determine whether it should transition into the NewMin or
the Inc state (see Figure 8.7). It is assumed that the value stored at address 0 in the RAM is
less than OxFF, so the MC output is 1 and the control unit transitions to the NewMin state.
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In this state, the control unit loads the MBR into the min register. When it is in the Inc
state, the control unit is getting ready to enter another loop of the for loop, by incrementing
the counter. It then transitions back into the CompC state on the next positive clock edge.

Before moving on with another example, a more detailed examination of the minimum
search circuit’s timing with the goal of determining the maximum clocking frequency of the
circuit is considered.

8.3 Timing

The timing analysis of a datapath and control circuit is based on the behavior of the general
model of its organization shown in Figure 8.1. Since the control unit in this figure is just a
FSM, understanding the timing analysis of the FSM presented in Figure 7.5 on page 128 is
imperative. The goal of this analysis is to determine the maximum clock frequency at which a
datapath and control circuit can operate. In order to do this, the worst case delay, called the
critical path, between successive clock edges offers insight.

The positive edge of the clock is used as the reference point of the timing analysis since
this is when the primary source of change in the circuit, the D flip flops latching their values,
occurs. The positive clock edge has two primary effects: It causes the FSM to transition into
a new state and it causes the registers in the datapath to latch new values. The propagation
delay of the flip flops is referred to as T),(A) in Figure 8.9. Since the datapath requires a valid
control word before it can begin, the critical path includes the output equation logic.

The D flip flops which store the state of the control unit’s FSM are the input of the OEs;
see Figure 7.1. The delay between the application of a valid @ to when the OEs assert their
new values is referred to as T),(B) in Figure 8.9.

The OEs of the FSM are the control word of the datapath and control circuit, telling the
elements in the datapath what operation to perform. Sequential logic components do not
actually perform their instructed operations until the next clock edge arrives. On the other
hand, combinational logic components perform their operations immediately. It is easy to
construct datapath instances where the control word effects the status input to the control
unit. For example, the control word selects an input of a mux, whose output is routed to a
comparator, whose status output is sent to the control unit. Thus, the combinational logic is
on the critical path because its delay constrains the maximum clocking frequency. The time
difference between the application of a valid control word to the datapath and the status input
to the control unit becoming valid is referred to as T,,(C) in Figure 8.9.

The status input to the control unit are routed to the MIE logic; see Figure 7.1. The delay
between the status inputs becoming valid and the MIEs becoming valid is referred to as T,(D)
in Figure 8.9.

Once the memory inputs have stabilized, they must be allowed some setup time, (see
page 95), before the next clock edge. The setup time is referred to as T,,(E) in Figure 8.9.

After the setup time, the outputs of all the circuit elements are stable. Thus, all the flip
flops should be ready to latch new values on the next clock edge. Adding together all the delays
on the critical path yields the minimum clocking frequency Toriricar = Tp(A) + Tp(B) +
T,(C) + T,(D) + T,(E). The maximum clocking frequency is the reciprocal of the minimum
period.

This timing analysis assumes that there are no combinational devices in the datapath
requiring more than 7,(C) + T,(D) time to compute their values. Components like large
adders require a lot of time to compute their values and may exceed these time bounds. When
this happen these components become part of the critical path in the timing analysis.
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Figure 8.9: A clock waveform annotated with the delays on the critical path of a datapath and
control circuit.

Increasing Parallelism

Two approaches are used to decrease the amount of time for a datapath and control circuit to
perform a task: To increase the clocking frequency of the circuit, or to decrease the number
of steps required to perform a task. The first method relies on a combination of technology
and organization of the components in the datapath. The second method relies on increasing
the utilization of the hardware components in the datapath and consequently decreasing the
number of steps required to perform the task. The second approach follows.

In order to have a datapath perform a task in fewer steps, it is necessary to have the
datapath perform multiple steps at the same time. In other words, the goal is to increase the
parallelism of the datapath. This modification can be done by combining one or more states
of the control unit together. Following some common sense rules accomplishes the change.

Two or more assignment statements can be combined if there are no conflicts in the hard-
ware resources required for the operations or if there is no conflict in the order of operations.
For example, the InitMin and InitI states in the minimum search circuit can be performed
at the same time because they operate on separate pieces of hardware.

Successive “branches” of the control unit can be combined when their values are available
as shown in Figure 8.10. In Figure 8.10, notice when X =1 and Y = 1, the control unit moves
from state A to state D via the state B. If states B and C do not perform any operations,
then they can be eliminated by transitioning directly from state A to state D via an arc
labeled XY

Figure 8.10: Consecutive branches by the control unit can be combined using AND.

8.4 Two-Line Handshake

In most cases, digital systems require data from the external world in order to perform their
tasks. In cases where the digital system and the outside word operate on independent clocks,
the transfer of data is complicated by the lack of a common clock. To understand how a reliable
transfer of data can be performed in this circumstance, consider the following scenario of a
producer trying to deliver a packet of candies to a consumer.
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Two participants associate in the scenario called producer and consumer. The producer
has a bag of 32 candies; (the number of candies in the bag really does not matter). The candies
are to be given to the consumer and the producer is to receive an acknowledgment from the
consumer of their receipt. Unfortunately, the producer is blind-folded and is wearing a rather
thick pair of ski mittens so they do not know when the consumer has actually taken the candies.
The producer and consumer must synchronize the transfer of candies using signals sent with
their voices. The transfer protocol is described in the following four steps:

1. The producer stumbles into consumer’s room and calls out, “Candies, Candies, ...”
(non-stop).

2. The consumer gets up, takes the box of candies and then calls out, “Received, Received,
... (non-stop).

3. The producer upon hearing the consumer has received the candies stops calling “Candies”
and walks out of the room.

4. The consumer upon hearing the producer has stopped calling out “Candies,” stops calling
out “Received.”

Figure 8.11 shows a timing diagram for this scenario. During the time interval labeled 1,
both the producer and consumer are quiet. Perhaps the producer is negotiating through the
consumer’s rooms. During time interval 2, the producer is calling out and the consumer is
quiet. The consumer, may be busy with some other task, and is not able to attend to the
producer. At the end of time interval 2, the consumer has taken the candies. During time
interval 3, perhaps the most annoying time in the scenario, both the producer and consumer
are calling out. At the end of time interval 3, the producer has heard the consumer and is
about to stop offering candies. At the beginning of time interval 4, the producer becomes
quiet; the producer knows for certain the consumer has received the box because the consumer
is calling out “Received.” At the end of time interval 4, the consumer hears the producer has
stopped calling out “Candies.” At the beginning of time interval 5, the consumer stops calling
out. The consumer knows that the producer knows that the consumer got the box of candies
because the producer has acknowledged the consumer’s thanks by being quiet.

volume

Producer

volume

Consumer : : : :
I 2 1 3 1 41 5
time

Figure 8.11: A timing diagram of a data transfer between a producer and a consumer.

In the above scenario, the producer is the active agent, the entity initiating the exchange
of candies and the consumer is the passive agent, the agent that waited for the candies. This
protocol, regardless of who is the producer or consumer, is called a two-line handshake because
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the communicating agents must have two, coordinating signals, Request (REQ) and Acknowl-
edge (ACK) and at least one data line. The REQ signal is used by the active agent to signal a
readiness to perform a data transfer. The ACK signal is used by the passive agent to acknowl-
edge the data has been transferred. An algorithm description of the two-line handshake for a
digital circuit which is the passive consumer is shown below.

1. while(REQ==0); // Do nothing but wait

2. register = DATA // Latch the data

3. ACK=1; // Acknowledge the producer
4. while(REQ==1); // Do nothing but wait

5. ACK=0; // Acknowledge the producer

In Line 1 and Line 4, the body of the while loops are empty; there is nothing to do but
wait. Furthermore, with respect to the external world, (see Figure 8.1), the ACK and REQ
signals act as status and command bits, respectively. The algorithm above is translated into
datapath and control in Figure 8.12.

Control Datapath
control -
Register
Data
4 2\
ACK
EE———
QLQ External World
- J

Figure 8.12: The datapath and control components required to implement a two-line handshake
where the digital system is the passive consumer.

The most important feature of the control unit are the two self-arcs at states Wait; and
Wait,. In state Waity, the control unit does nothing except check the value of the REQ
signal. As long as REQ=0, the control unit waits. As soon as REQ=1, the control unit
proceeds to state Get where it enables the register to load the external data. The control
unit spends a single clock cycle in this state before moving to state Waitsy. In state Waits,
the control unit asserts and acknowledges, (ACK=1), and waits for the REQ signal to drop.
It is important to assert an acknowledge only after latching the data into the register. If an
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acknowledge is sent in the Get state, then it is possible for a very fast external world to be
able to change the data signal before the end of the circuit’s clock cycle, giving the wrong data.
When the REQ signal is dropped, the control unit goes to state Next which represents some
further actions expected of the digital system to perform. In state Next, (and in all other
states except Walitsy), the ACK signal should be set to 0.

Notice that no matter how different the clock speeds are between the producer and the
consumer, this circuit transfers data correctly. If the consumer is faster, it will wait patiently
for the producer. If the consumer is slower, it will work as fast as possible to latch the data.

8.5 RAM counter

The following circuit uses a two-line handshake to transfer a data item (called the key) to a
digital circuit which scans a RAM, counting the number of words which match the key. The
word statement for this problem is:

Build a circuit to read in an 8-bit KEY using a two-line handshake; the circuit is a
passive consumer. The circuit should search an 8kx8 RAM, counting the number
of words that match KEY. Assume the RAM is preloaded with data and it can
respond to a read request with valid data within one clock cycle. After counting
the number of matches, the circuit should wait for another key and repeat.

The algorithm for this circuit needs to read in the key using a two-line handshake and then
needs to read through the RAM, one word at a time. Similar to the minimum search algorithm,
the RAM is depicted as an array. Since it takes a full clock cycle to read the RAM, then it is
best to store the currently read word in a register for further use. A register which buffers the
contents of a memory is often called a memory buffer register, or MBR for short. Once the
RAM value is in the MBR, the value is compared against the key. If there is a match, then a
register called match is incremented.

1. while(1) {

2 while(REQ == 0);

3 KEY = data;

4. ACK = 1;

5. while(REQ == 1);

6 ACK = 0;

7 match = 0;

8 for(i=0; i<8191; i++) {
9. MBR = RAM[i];

10. if (MBR == KEY) {
11. match=match+1;
12. } // end if

13. } // end for

14. } // end while

Lines 2-6. The two-line handshake is formed. The datapath and control are similar to
Figure 8.12 with the register being named key.

Line 8. The for loop generates the address of each word in RAM. This line of code adds
several states to the control unit and adds a counter and a comparator to the datapath. The
data output from the counter provides the address input of the RAM.
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State ACK mux Reg match Reg KEY Counter MBR enb
0 0 pass 0 0 hold 0 hold 00 hold 0 hold 0 inactive
01 load
1 1 match+1 1 load 1 load 10 count 1 load 1 read
‘Wait 0 X 0 0 00 0 0
Get 0 X 0 1 00 0 0
‘Waito 1 X 0 0 00 0 0
match 0 0 1 0 00 0 0
Init 0 X 0 0 01 0 0
For 0 X 0 0 10 0 0
Read 0 X 0 0 00 1 1
Comp 0 x 0 0 00 0 0
Inc 0 1 1 0 00 0 0

Table 8.3: The control word for the RAM match circuit and its value for each state.

Line 9. The assignment statement takes the data output from the RAM and sends it
to the MBR register. While in this state, the control unit should read from the memory and
assert load on the MBR’s control input.

Line 10. The comparison adds a state to the control unit in which the E output from the
comparator is used in the datapath to determine if it should increment the match.

Line 11. The assignment statement increments the number of matches if the key is equal
to the current memory word. There are two reasonable hardware solutions for the match
register, a counter or a register with an adder. The solution chosen largely is a matter of
preference or of available hardware. In the solution presented, the register with an adder
combination is used. The completed datapath and control is shown in Figure 8.13.
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Figure 8.13: The datapath and control for the RAM match circuit.

The control word, shown in Table 8.3, is formed by enumerating the control inputs in the
datapath, and by listing their values for each state in the control unit.

8.6 Keyboard Scancode Reader

Even though PS/2 keyboards are being replaced with their USB counterparts, they are still
a common piece of technology that can easily be incorporated into digital systems with the
help of a scan code reader. Before building a scan code reader, understanding how a keyboard
works must come first. Using the input, output, and behavior tables utilized in Chapters 4
and 6 supports this goal.
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Nomenclature: PS/2 Keyboard

Data Input: none

Data Output: 1-bit data, nominally logic 1

Control: none

Status: none

Others: 1-bit clk, nominally logic 1

Physical Input: key press and key release events

Physical Output: | none

Behavior: When a key is pressed, its 8-bit make code is transmitted.
When a key is released, an 8-bit break code is transmitted,
immediately followed by the key’s 8-bit scan code.

While the table implies a keyboard is an output-only device, the truth is the clock and
data lines are open collector signals. In other words, the clock and data lines can safely
be manipulated by the external world to configure a keyboard. A common example of such
bidirectional communication occurs every time the “Caps Lock” key is pressed on a keyboard.
When this happens, the keyboard sends the “Caps Lock” scan code to the PC and the PC
in return writes a “Toggle Caps Lock LED” command to the keyboard. Since the keyboard
scan code reader does not write to the keyboard, it assumes that the clock and data signals
are outputs from the keyboard.

When a keyboard key is pressed, the keyboard sends one packet of information as shown
at the top of Figure 8.14. The 8-bit data contained in this make code is the scan code of the
key pressed. The relationship between the keys and their scan codes is not at all obvious and
is not based on ASCII. The exact codes are immaterial to the discussion; the curious reader
can perform a quick Internet search on “PS/2 keyboard scan codes” to get a complete listing.
When a key is released, two packets are transmitted as shown at the top of Figure 8.14. The
break code is almost always equal to 0xF0. The final packet is the scan code of the released
key.

While there is a scan code for “a” key, there is not a scan code for “A”. The device reading
the keyboard interprets the make code for “shift,” and then sees a make code for “a”. From
this, the device reading the keyboard should understand that the user wants a capital “A”.
More than likely, the user will release the “a”, first causing its break code and scan code to be
transmitted, followed by the break and scan code for the “shift” key.

Each of these packets consists of 11 bits as shown in the lower half of Figure 8.14. The data
from the keyboard is always valid on the falling edge of the clock signal. The keyboard asserts
new data on or around the rising edge of the clock. The 11-bit data packet always begins with
a start bit equal to 0. Following the start bit are 8-bits of data, transmitted least-significant
bit first. Following the data bits is an odd-parity bit, whose value is set by the keyboard so
that the total number of 1s transmitted in the eight data bits plus the parity bit equals an
odd number. For example, if the eight data bits are 01100011, then the parity bit would equal
1 so that the total number of 1s would be an odd number, in this case 5. By adding some
additional circuitry, the parity bit can be used to detect errors in transmission. Following the
parity bit, the final bit of the data packet, the stop bit, is sent and is always equal to 1.

The keyboard scan code reader circuit assumes only one key is pressed at a time. That is,
while a key is being held down, no other key is assumed to be pressed. Thus, typing in “A”
may result in the keyboard scan code reader generating an invalid output. Furthermore, the
circuit ignores the parity bit, forgoing any possibility of checking for errors in the transmitted
data. The input, output, and behavior of the keyboard scan code reader is summarized in the
following table.
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Figure 8.14: The behavior of the keyboard clock and data lines to a key press event.

Nomenclature: | Keyboard scan code reader

Data Input: 1-bit kd_data, nominally logic 1 1-bit kd_clk, nominally
logic 1

Data Output: | 8-bit scan code

Control: none

Status: 1-bit busy, nominally logic 0

Others: 1-bit clk, nominally logic 1

Behavior: Interprets the PS/2 keyboard clk and data signal from a

keypress event and outputs the associated scan code. The
busy signal goes high when the first data bit arrives and
stays high until the last data bit is received. Busy is low
only when there is a valid scan code on the output.

The keyboard scan code reader algorithm just shifts in the 33 bits sent from the keyboard
and holds the busy signal high while doing this. The scan code is extracted from the low-order
bits of the shift register outputs.

1. while(1) {

2 busy=0;

3 while (kb_clk == 1);

4. busy=1;

5. for (count=0 count<33; count++) {
6 while(kb_clk == 1);

7 shift = (shift << 1) | kb_data;
8 while(kb_clk == 0);

9. }

10. scan = shift[9-2]

11. }

Note the keyboard clock, kb_clk, signal is being treated as an ordinary data input signal,
rather than as a clock signal. This decision seems to increase the complexity of the solution,
but actually makes implementing the circuit easier on FPGAs because the clock does not
require special clock net resources and it makes integrating clock debouncing circuits easier.
The keyboard scan algorithm is converted into datapath and control by parsing it line-by-line.

Line 1. The while loop formed by Line 1 and Line 9 means the scan code reader is
expected to operate forever. This statement is responsible for the start state in Figure 8.15.

Line 2. The assignment statement can be handled with the control unit because busy is
a single bit. Thus, the assignment state does not introduce any states in the control unit.

Line 3. The delay loop waits for the falling edge of the keyboard clock. Introducing a
1-bit comparator in the datapath to check if kb_clk is equal to 1 is wasteful because the E
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output of the comparator is equal to kb_clk itself. Hence, the kb_clk signal is sent directly to
the control unit as a status signal. The while loop is responsible for the while state in Figure
8.15.

Line 4. The statement is incorporated into the control word. Its value is assigned in the
states which make up the surrounding statements.

Line 5. This line of code requires a 6-bit counter and a 6-bit comparator to be added to
the datapath. The statement is responsible for the clear, inc and done? states in Figure
8.15. Note that the done? state closes the infinite loop started in Line 1.

Line 6. The delay loop in Line 3 is used to distinguish the start of a keypress event and
consequently, when to set the busy bit to 1. The delay loop on Line 6 indicates the presence of
a negative edge on the keyboard clock and hence a valid data bit. This statement is responsible
for the waitl state in Figure 8.15.

Line 7. In order to get to Line 7, a negative edge on kb_clk occurred. Hence, the keyboard
data is latched up into a shift register. This statement is responsible for the shift state in
Figure 8.15.

Line 8. A delay loop is waiting for the rising edge of the keyboard clock. As with Line 3
and Line 6, this statement requires no hardware in the datapath. The statement is responsible
for the waitO state in Figure 8.15.

compare

kb_clk
—

kb_data

8

scan

Figure 8.15: The datapath and control for the kbscan circuit.

The control word is formed by writing down the control settings for all the components in
the datapath. Next, each state is listed, each in its own row, and the binary control word for
each state is defined in Table 8.4.

This concludes the construction of the keyboard scan code reader circuit. The circuit,
however, is used in the following section in order to build a circuit to generate a light show.
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State Counter Shift Reg Busy
00 hold 00 hold 0 valid output
01 load 01 load 1 invalid output
10 count | 10 shift left
11 shift right
start 01 00 0
while 00 00 0
start 00 00 0
clear 01 00 1
done? 00 00 1
wait1l 00 00 1
shift 00 11 1
wait0 00 00 1
inc 10 00 1

Table 8.4: The control word for the keyboard scan circuit and its values for each state.

8.7 Light Show

A light show consists of an endlessly repeating sequence of up to 16 frames. A frame is an
illuminated pattern of LEDs on a LED bar graph. The user creates a light show by specifying
the number of frames in the show, editing those frames, and then instructing the circuit to
cycle through the frames. The input to the circuit comes from a standard PS/2 keyboard. The
output of the circuit is displayed on a LED bar graph and a 7-segment display. The behavior
of the Light Show circuit is given in Figure 8.16.

prompt index

— N, S/

Figure 8.16: A state diagram describing the behavior of the Light Show circuit.

The Light Show circuit changes state when the users presses a key on the keyboard. For
example, pressing “M” while in the index state causes the circuit to transition into the
modify state. The behavior of the Light Show circuit in each of its states is described in
Table 8.5.

The algorithm for the light show circuit continually scans the busy signal and the keyboard
scan code. When the user presses either a “L”, “I”, or “S”, the algorithm drops into one of
the subfunctions described in Table 8.5. Assume the Light Show circuit is clocked at 16MHz.
The clock rate is needed in order to create a delay of 0.25 seconds required to pace the frames
during the show phase. The delay is created by having the circuit wait for a counter to count
up from 0 to 4,000,000. The function calls in the algorithm are explained in the subsequent
line-by-line analysis.
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State \ LED bar graph \ 7-segment \ Behavior

reset blank blank All sequential elements are reset

prompt | blank “p” Waiting for user input

limit blank current limit | The number of frames in the light
show is called the limit. If the
user enters a hex value between
0-F it is stored as the new limit.

index current frame current index | Each frame in the show has an

index which defines its position in
the show. If the user enters a hex
value between 0-F, this frame will
be edited in the modify state.

modify

current frame

current index

Each frame has eight bits which
specify the state of the 8 LEDs on
the bar graph. These bits are tog-
gled by pressing the correspond-
ing key. For example, if LED 5 is
on, pressing “5”, causes LED 5 to
go off.

= O 00 NO O WN -

= e
N =

show

cycle through frames

current index

Consecutive frames are displayed
on the LED bar graph at around
4Hz. After the last frame is dis-
played, the circuit loops back to
the Oth frame.

Table 8.5: The behavior of the Light Show circuit in each of its states.
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if (!busy and IsL(ScanCode)) {

while (!busy’ and !'IsP(ScanCode)) {

HexDisplay = Hex2Seven(limit);

BarGraph = 0x00;
if ('busy and IsHex(ScanCode)) {
limit = Scan2Hex(ScanCode) ;

L

if (!busy and IsI(ScanCode)) {
while (busy or !'IsP(ScanCode)) {

while(!busy) ;

HexDisplay = Hex2Seven(index) ;
if (!busy and IsHex(ScanCode)) {
index = Scan2Hex(ScanCode) ;

}

while(!busy) ;

if (!busy and IsM(ScanCode)) {
while (busy or !IsI(ScanCode)) {
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20. HexDisplay = Hex2Seven(index);

21. BarGraph = RAM[index];

22 while(!busy) ;

23 while (busy);

24. if ('busy and IsOct(ScanCode)) {

25. RAM[index] = Flip(IsOct(ScanCode) ,RAM[index]);

26. Y Y ¥ ¥ }

27. if (!busy and IsS(ScanCode)) {

28. index = 0;

29. while(!busy and 'IsP(ScanCode)) {

30. BarGraph = RAM[index];

31. HexDisplay = Hex2Seven(index) ;

32. for (timer=0; timer<2°22; timer++);
33. index += 1;

34. if (index == limit) index=0;

3. } }+ }

As each line is parsed, new states are added to the control unit and basic building blocks
are added to the datapath. In several cases, brand new building blocks need to be created
in order to perform the tasks required of the datapath. Descriptions of these components are
provided, but the structure of their internal organization is left to the reader to determine.

Line 1. The infinite loop formed by Line 1 and Line 35 means that the outermost loop
in the control unit cycles in the prompt state in Figure 8.17 until something happens.

Line 2. From the word statement, the 7-segment display shows “P” or a numerical value.
A 2:1 mux in the datapath resolves this conflict. Since the assignment statement is performed
without the need to actually assign a value to a register, no explicit state is required. The
control unit selects the “P” input when in the prompt state.

Line 3. The busy signal is generated by the kbscan component in the datapath. The
functional notation “IsL(ScanCode)” is just short-hand for the IsL output from the ScanDecode
component in the datapath. The ScanDecode component takes in the 8-bit scan code from
the kbscan component and outputs 1 when the scan code corresponds to the scan code for the
letter “I”. The ANDing of busy’ and IsL signals is handled by the internal logic in the control
unit. When the condition is true, the control unit transitions to the set limit state.

Line 4. The condition of the while statement is checked in the set limit state. When
the user presses a “p” in the set limit state, the control unit transitions back to the prompt
state. See page 83 for more details regarding the scan code recognizer circuit.

Line 5. Two different numerical values can be displayed on the 7-segment display, limit
and index (Line 13). The 2:1 multiplexer in front of the Hex2Seven component allows the
control unit to select which of these two values is converted and sent onto the display. The
control unit asserts its control outputs to route the limit register’s output to the 7-segment
display in the set limit state.

Line 6. The LED bargraph displays two different values on its output, 0x00 and RAM[index],
(Line 21). The 2:1 multiplexer placed in front of the LED bargraph resolves this conflict. The
control unit selects 0x00 when it is in the set limit state.

Line 7. If the control unit detects a hexadecimal character has arrived while in the
set limit state, the control unit transitions to the load limit state. The datapath already
contains the hardware necessary to check this condition.
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Line 8. This assignment is performed in the load limit state where the control unit
asserts a load command to the limit register. The data input to the limit register comes from
the converted scan code via the Scan2Hex component. The Scan2Hex component takes in an
8-bit scan code corresponding to a key representing a hexadecimal character and converts it
into its 4-bit value. See page 84 for more details.

Line 9. After loading the limit register, the control unit immediately transitions to the
wait limit state. Then, the control unit waits for some keyboard activity before transitioning
back to the set limit state. This action is done in order to prevent the limit register from being
continuously loaded while waiting for keyboard activity. Such repetitive loading is considered
bad form. While waiting in this state the control unit should display the new limit register on
the 7-segment display.

Line 10. The If/Then statement started on Line 3 is terminated.

Line 11. This statement causes the control unit to transition to the set index state.

Line 12. The while statement returns the control unit transition to the prompt state
when “p” is pressed.

Line 13. When the control unit is in the set index state, the 7-segment display should
show the current index by asserting the correct control signals.

Line 14. When the control unit is in the set index state and a hexadecimal character
is typed, the control unit should transition to the load index state.

Line 15. Since the primary purpose of the index is to walk through the memory during
a light show, it is stored in a counter. The control unit signals the counter to load the index
in the load index state.

Line 16. After loading the index register, the control unit transitions to the wait limit
state where it waits for keyboard activity before transitioning back to the set index state.

Line 17. Closes the if/then statement from Line 14.

Line 18. When the control unit is in the set index state, a keypress of “m” causes it to
transition to the modify state.

Line 19. When the control unit is in the modify state, a keypress of causes it to
transition to the set index state. Otherwise the control unit transitions to the read state.

Line 20. When in the read state, the control unit should route the current index to the
7-segment display.

Line 21. When in the read state the control unit instructs the bargraph register to load
the current frame from the RAM.

Line 22. After reading the current frame, the control unit transitions to the wait! busy
state where it displays the frame on the LED bargraph and waits for a keypress event.

Line 23. The control unit waits for a key press event in order to leave the wait busy
state.

Line 24. If the keypress event was an octal digit, the control unit transitions to the write
state, otherwise it goes to the modify state to check if the keypress was an “i”.

Line 25. In the write state, one of the current frame’s bits are flipped and then the
altered frame is stored back into the RAM. The lower three bits of the converted scan code
tell the flip component which bit of the frame to invert. Refer to page 83 for further details
regarding the flip component. After this, the control unit goes to the read state which started
the while loop on Line 19.

Line 26. The preceding control structures are terminated, ending with the if/then on
Line 11.

Line 27. This statement causes the control unit to transition to the reset index state.

Line 28. When in the reset index state, the control unit instructs the index counter to
synchronously reset its value to O.

(7330
1
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Line 29. Pressing “p” stops the light show and returns the control unit to the prompt
state. This check is performed during the first state, load frame, of the while loop.

Line 30. The bargraph register is loaded with the current frame during the load frame
state.

Line 31. The control unit should display the current index on the 7-segment display
during all the states which make up the while loop of the light show. In preparation for the
loop in the next line, the timer counter is reset to 0 in the load frame state.

Line 32. In the wait frame state, the control unit increments the delay counter from 0
to 4,000,000. The comparator on the delay counters output signals to the control unit when
this happens. Since the clock is running at 16MHz, this count value will hold the control unit
in the wait frame state for 1/4 of a second.

Line 33. When in the inc index state, the control unit increments the index of the
current frame.

Line 34. When the control unit is in the comp index state, it checks the index equals
the limit. If it does, the control unit transitions to the reset index state, otherwise the next
frame is loaded in the load frame state.

Line 35. The program is closed.

The net accumulation of the states and hardware added in the parsing of the Light Show
algorithm are shown in Figure 8.17.

kb_clk kb_data
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Figure 8.17: The datapath and control for the Light show circuit.

The next step in the design of Light Show circuit is to define the control word and its
value for each of the states shown in Figure 8.17. The control word is the set of signals from
the control unit to the control inputs of the components in the datapath. The top row of
Table 8.6 lists all the components in the datapath which have control inputs. The resulting
11-bit control word is then defined for each of the 17 states. The actions performed in each
state are determined from the line-by-line analysis of the light show algorithm.

The reader is left to derive the MIEs and OEs for the control unit.
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State bar T-seg hex index delay limit bargraph enb wen flip
‘ ‘ mux ‘ mux ‘ mux ‘ count ‘ count register register ‘ ‘ ‘
0 0x00 0 index 0 7-seg 00 hold 00 hold 0 hold 0 hold 0 0 0 pass
1 bar 1 limit 1 “p” 01 cnt 01 cnt 1 load 1 load read write 1 flip
10 load 10 load
11 reset 11 reset

prompt 0 X 1 00 00 0 0 0 0 X
set limit 0 1 0 00 00 0 0 0 0 X
load limit 0 1 0 00 00 1 0 0 0 X
waitlimit 0 1 0 00 00 0 0 0 0 X
reset index 1 0 0 11 00 0 0 0 0 X
load frame 1 0 0 00 11 0 1 1 0 X
wait frame 1 0 0 00 01 0 0 0 0 X
inc index 1 0 0 01 00 0 0 0 0 X
comp index 1 0 0 00 00 0 0 0 0 x
set index 0 0 0 00 00 0 0 0 0 X
load index 0 0 0 10 00 0 0 0 0 X
wait index 0 0 0 00 00 0 0 0 0 X
modify 0 0 0 00 00 0 0 0 0 X
modify read 1 0 0 00 00 0 1 1 0 x
modify write 1 0 0 00 00 0 0 1 1 1
wait 'busy 1 0 0 00 00 0 0 0 0 x
wait busy 1 0 0 00 00 0 0 0 0 x

Table 8.6: The control word for the LightShow circuit and its value for each state.
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8.8

1.

Exercises

(4 pts.) Show how to eliminate the 4-bit 2:1 mux in the bit counter by assuming that
the Y register had an asynchronous active low reset input. Consider the fact that the
external world still needs the ability to hit a single button to reset the state of the entire
circuit.

(6 pts.) A control unit has been built with the following control word:

Reg A | RegB | Reg P Mux M
00 hold | 00 hold | 1 hold 1 Load 0
11 Isr 11 Isr
10 Isl 101sl | O0load | 0 Load Add
01 load | 01 load

Regrettably, these setting were completely wrong. In reality here is what the control
word should have been:

Reg A | RegB | Reg P Mux M
00 hold | 00 hold | 0 hold 0 Load 0
01 lsr 01 Isr
10 1sl 10 1sl 1 load | 1 Load Add
11 load | 11 load

The design team is in a total panic. The design team thinks that it will take weeks
to straighten out the error, they claim that the control unit needs to be redesigned.
However, there is a cheap and easy solution. Design some combinational logic to insert
between the faulty control unit and the datapath in order to straighten out the bum
control signals. There is one error can be fixed by changing something in the datapath,
no extra hardware is required. Identify this error and its solution.

(8 pts.) Modify the algorithm for the bit counting circuit so that it uses a two-line
handshake to transmit the Y register. The circuit should take the role of an active
producer in the transmission of Y. The circuit has four handshaking lines and two data
lines. Hint, a common error of students is to insert a three-state buffer on the output of
the Y register to the outside world to prevent its transmission to the outside world until
the value of Y is finalized. Don’t do this! If the outside world reads the value of Y before
the circuit’s signals are valid (via the send REQ signal) then its their own dumb fault.
Just send the Y signal outside the datapath as is.

(16 pts.) A 8kx32 RAM is full of integer data. Design a circuit to scan the RAM and
find its smallest value.

Turn in; an algorithm the datapath and control unit, the control word table, the memory
input equations, and output equations. The control unit is to be implemented using a
ones hot encoding.

(16 pts.) A 8kx32 RAM is full of integer data. Design a circuit that determines the
sum of the integers between addresses A and B. The values of A and B are to be read in
using a two-line handshake where the circuit is to act as a passive consumer. The sum is
to be placed in a 32-bit register S. Turn in; an algorithm the datapath and control unit,
the control word table, the memory input equations, and output equations. The control
unit is to be implemented using a ones hot encoding.
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6. (16 pts.) Design a circuit that repetitively looks at a 1-bit input X. Anytime X changes

logic values increment an 8-bit register Y. Turn in; an algorithm the datapath and control
unit, the control word table, the memory input equations, and output equations. The
control unit is to be implemented using a ones hot encoding.

(16 pts.) A 256x8 RAM is full of data. Design a circuit that jumps around in memory.
It does this by fetching a word and using the retrieved word as the next address to jump
to. The circuit is to start at address 0. Turn in; an algorithm the datapath and control
unit, the control word table, the memory input equations, and output equations. The
control unit is to be implemented using a ones hot encoding.

To desired behavior of the circuit is illustrates in Figure 8.18. If the address=0 then the
circuit will jump to address 3F then 28, 53, 3F and continue cycling for ever amount
these three addresses.

data 3F |00
5:3 28 %
2:8 3F QW
F |5 <
M : address

Figure 8.18: A 256x8 RAM loaded with some data.

8. (16 pts.) A 256x8 RAM is full of data. Design a circuit that jumps around in memory.

The current address should be stored in a register called PC. If the MSB of the fetched
word is 1, then the remaining seven bits represent a 7-bit 2’s complement number; add
these seven bits to the PC. If the MSB of the fetched word is 0 then just increment the
PC. Repeat this process forever. Turn in; an algorithm the datapath and control unit,
the control word table, the memory input equations, and output equations. The control
unit is to be implemented using a ones hot encoding.

The desired behavior of the circuit is illustrated in Figure 8.19. In this figure if PC=0
then the word at that address (3F) has a MSB of 0 so the PC is incremented to 1. The
word at address 1 is fetched (BC) and has an MSB of 1 so the least significant seven bits
of BC are added to the PC, making its new value 3D. repeating this process sees the PC
goto address 21, 22, 21, 22 into a never ending cycle. Make sure the solution identifies
how to add the least significant seven bits to an 8-bit PC.

(16 pts.) Modify the circuit in the previous problem as follows. Anytime an external
input, called IRQ), is asserted the circuit is to stop jumping around and assert and ACK.
The outside world will then read the PC (which must be routed outside the datapath)
and then drop the IRQ. The circuit should then drop the ACK and resume jumping.
Turn in; an algorithm the datapath and control unit, the control word table, the memory
input equations, and output equations. The control unit is to be implemented using a
ones hot encoding.
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10.

11.

12.

data 3F |00
BC |01
77 |21

FF 22 QW

E4 3D Qﬁ

address

256x8 RAM
_—

Figure 8.19: A 256x8 RAM loaded with some data.

(16 pts.) Design a circuit that reads successive words from a 1kx12 RAM and updates
a 12-bit register called ACC based on the upper two bits of the memory word. The
address of the current memory word should be contained in a register called PC (Program
Counter). Since the words read from the RAM will tell us what operation to perform on
the ACC, the memory word will be stored in a register called IR (Instruction Register).
If the upper two bits of IR are:

a) 00 then add the lower 10 bits of the IR to ACC. Pad the upper two bits of the IR
with 0’s before adding to the ACC.

b) 01 then store the ACC to the address specified by the lower 10 bits of the IR.

¢) 10 then load the ACC from from the address specified by the lower 10 bits of the
IR.

d) 11 then clear the value of ACC to 0.

The PC is to be initialized to 0. After the each memory word is read and the appropriate
operation performed on ACC, the PC should be incremented. Turn in; an algorithm
the datapath and control unit, the control word table, the memory input equations, and
output equations. The control unit is to be implemented using a ones hot encoding.

(16 pts.) Design a circuit that moves M consecutive words from address S (source) to
address D (destination). For example, if M =4, S = 3EA and D = 1FE then the circuit
would move words 3EA, 3EB, 3EC and 3ED to address 1FE, 1FF, 200 and 201. Each of
M, S, D is preloaded into a register. While this problem appears simple, its really rather
treacherous. The circuit will have to handle cases where S+ M > D. In such a case the
order of the data movement must be carefully planned. In order to simplify the design,
assume that S < D. Turn in; an algorithm the datapath and control unit, the control
word table, the memory input equations, and output equations. The control unit is to
be implemented using a ones hot encoding. Do not worry about the sizes of the registers
or RAM.

(16 pts.) Design a circuit that determines how many times a user specified 8-bit value,
called key, occurs in an 1kx8 RAM. key is to be read using a two-line handshake; the
circuit is the passive consumer. Turn in; an algorithm the datapath and control unit,
the control word table, the memory input equations, and output equations. The control
unit is to be implemented using a ones hot encoding.
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(16 pts.) Design a circuit that records the number of times that it has seen an 8-bit,
user specified value, key. The key will is shown to the circuit, at most, 16 times. The
collection of keys is stored in a 1kx12 RAM. The RAM is larger than it needs to be
because it is thought that in the future the number of keys will be increased. Each word
of the RAM is organized as follows; The upper eight bits hold the key and the lower four
bits hold the “hit count”, the number of times that this key has been seen. The circuit
should read in the key using a two-line handshake; the circuit is the passive consumer.
The circuit should then scan the RAM looking for a matching key; a match, if it exists,
will only occur once in the RAM. If a match is found then increment the lower four bit
and store the key and the incremented hit count back to RAM. Turn in; an algorithm
the datapath and control unit, the control word table, the memory input equations, and
output equations. The control unit is to be implemented using a ones hot encoding.

(36 pts.) Design a digital circuit to control access to an automated parking garage
containing 828 parking spaces. Drivers pull up to the garages gate and insert their pass
card into a card reader. The card reader sends the pass card ID number to the digital
circuit. If their pass card has a valid code then the gate opens. There is a pressure sensor
just inside the entry way which sends a signal to the circuit whenever a significant load
is present (over 150 lbs). The exit procedure is similar, the users have to insert their
pass card into a card reader. The digital circuit then raises the exit gate bar, a pressure
sensor at the exit tells the circuit when it is OK to close the exit gate. See Figure 8.20.

Card readers

Sensors

==
A

Entrance Exit
Figure 8.20: The layout of an automated garage.

The signal names are defined in the following table:
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Entrance gate InGate 0 Close gate 1 Open gate

Entrance sensor | InSen 0 No weight 1 Weight present
Entrance REQ | InREQ 0 No card read data | 1 Card reader has data
Entrance ACK | InACK Circuit control

Entrance 1D InID Card ID

Exit gate OutGate || 0 Close gate 1 Open gate

Exit sensor OutSen 0 No weight 1 Weight present

Exit REQ OuwtREQ || 0 No card read data | 1 Card reader has data
Exit ACK OutACK Circuit control

Exit ID OutID Card ID

The gate requires a logic 1 to start and to stay open. The sensor will generate a logic
1 while there is more than 150 lbs. on the sensor. Only close the gate when the rear
wheels of the car activate the sensor (hope no unicycle use the garage). The entrance
card reader will provide InID or OutID using a two-line handshake, where the circuit
is the passive consumer. Assume that at any point in time only one car is entering or
leaving the garage. That is, deal with only one direction at a time.

In addition to controlling access to the garage, the clients would also like to keep track
track of how many times a pass ID has been used to gain access in-to and out-of the
garage. The count will be checked and reset once a month. Cars pass into and out of the
garage at most 4 times a day.

To implement this circuit use a single RAM. Each word of the RAM must be divided
into three fields; ID, Ins and Outs corresponding to the pass ID number, number of times
into the garage and number of times out of the garage respectively. The digital circuit
will scan successive IDs in the RAM looking for a match. If a match is found then either
increment the Ins or Outs field then store this item back into the RAM. A major issue
in this design is determining the sizes of the data items. Use the information in the
word statement to make the design as space efficient as possible. Turn in; an algorithm

ID Ins Outs

addr
din : ! dout
enb

—
wen

Figure 8.21: The format of the RAM in the garage circuit problem.

the datapath and control unit, the control word table, the memory input equations, and
output equations. The control unit is to be implemented using a ones hot encoding.
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(16 pts.) Design a circuit that converts a 6-bit binary number into a 2 digit BCD
representation. The circuit acquires a 6-bit number through a two-line handshake where
the circuit is a passive consumer. The circuit is then to convert this 6-bit number into
two BCD digits and signals it completion via a DONE signal.

A number X can be converted from binary into BCD digits by iteratively checking that
X is greater than 10, then subtracting 10 from X. Each subtraction should increment a
tens digit counter.

Make sure to identify the size of all the signals in the datapath and the size of any
register, counters, etc... Turn in; an algorithm the datapath and control unit, the control
word table, the memory input equations, and output equations. The control unit is to
be implemented using a ones hot encoding.

(8 pts.) Design a circuit that converts a 2 digit BCD number into a binary number.
The circuit acquires the BCD digits through 2 read operations most significant digit first.
Each read operation takes the form of a two-line handshake where the circuit is a passive
consumer.

A 2 digit BCD number can be converted into binary by multiplying the most significant
digit by 10 then adding it to the least significant BCD digit. A number can be multiplied
by 10 using the shift-and-add technique presented on page 104. Note, this task can be
accomplished without using a single shift register. For example, the adder in Figure 8.22
generates the value of 9*X from a 4-bit register by adding X, shifted left by three bits,
to X.

000 000

S

adder

J79*X

Figure 8.22: A simple circuit to compute 9*X.

Make sure to identify the size of all the signals in the datapath and the size of any
register, counters, etc... Turn in; an algorithm the datapath and control unit, the control
word table, the memory input equations, and output equations. The control unit is to
be implemented using a ones hot encoding.

(36 pts.) Design a digital circuit that plays a game of roulette, allows betting and
keeps track of total earnings. The roulette wheel has 8 slots, labeled 1...8. The player
can play one of the numbers straight or play even or odd. The player starts with $10.
The layout of the machine is shown in Figure 8.23.

The sequence of events is as follows:
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NP |
g Pick
A | - ‘ L L
g Bet
N | v/
- g - 7 8 Ev
Win
N | v/
- g - 4 5 6
Loose
B 1 2 3
Roll Od

Figure 8.23: The layout of the roulette playing machine. The two 7-segment displays at the
top are used for a variety of purposes.

2)

b)

e)

f)
g)

The circuit lights up the PICK LED. The player enters their guess; a number be-
tween 1-8, even or odd. While holding down their guess they press the roll button.

The circuit displays the picked number in the left most 7-segment display. The
circuit lights up the BET LED. The player enters a one digit bet between 1 to 8.
While holding down their bet they press the roll button.

The circuit displays the bet on the rightmost 7-segment display. The player pushes
and holds down the roll button. The circuit increments a mod 8 counter while the
roll button is depressed. It would be nice to display the current count value on right
7-seven segment display. Since the clock cycle is on the order of milliseconds, then
the user would not be able to anticipate the roll.

The player releases the roll button. The final roll is displayed on the rightmost
7-segment display. The circuit stops incrementing the counter and checks to see if
the final value matches the players guess. If the match is correct then light the WIN
LED and increment the players earnings. If the match is incorrect then light the
LOOSE LED and decrement the players earnings.

The play hits the roll button to clear the roll information from the 7-segment dis-
plays.

The circuit displays the players earnings on the 7-segment display.

When the user pushes the roll button then go to step 1.

Set reasonable bounds on the maximum winnings. Values may be displayed in hexadec-
imal (assume there is a hex to 7-segment display converter available). See page 79 for
more information. Turn in; an algorithm the datapath and control unit, the control word
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table, the memory input equations, and output equations. The control unit is to be
implemented using a ones hot encoding.

(20 pts.) Design a tone generator. The tone generator is a box with two buttons on
it labeled “Up” and “Down” and a 1-bit output. At start-up the tone generator outputs
a 440Hz square wave (clock-like signal). Every time that the Up button is pressed
the tone generator should increase the frequency of the square wave by %2 — 1.0 =
0.059463094 ~ 7/128 of its current frequency. To determine the fraction 7/128 of X,
shift X left by 7-bits (dividing by 128) then multiplying it by 44+-2+1. Every time that
the down button is pressed the circuit should decrease the frequency by 7/128 of its
current value. Assume that the master clock frequency of the circuit is 4Mhz. Turn in
any relevant calculations, algorithm, datapath and control, control word, MIEs, OEs and
the maximum tone frequency of the circuit. Turn in; an algorithm the datapath and
control unit, the control word table, the memory input equations, and output equations.
The control unit is to be implemented using a ones hot encoding.
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adder subtractor, 72-73 bad, 95
silly, 95
bed to 7-segment, 79 SR, 93-94
bit-slice, 5, 71 leaf, 23
Boolean variable, 1
maxterm
clocked latch, 88 definition, 31
comparator, 74-76 minterm
truth table, 74 definition, 29
counter, 106-108 modular adder, 82
modular arithmetic, 82
decoder, 6667 multiplexer, 67-69
Doughnut
Hyper, 49 numbering system
Ultra, 50 bas'e,.Q
doughnut, 45, 47 positional, 1
Texas, 48 overflow, 5
duality principle, 24 ’
parent, 22
edge sensitive, 89 parsing, 22

expression, 22 POS
expression:child expression, 22

canonical, 32
expression:parent, 22

priority encoder, 81
product term, 21
product term: shared, 51
propagation delay

flip flop, 88
asynchronous set, reset, 96
propagation delay, 95

flip flop, 95
hold time, 95 RAM, 110-113
. realize, 21
1mp1§ment, 21 register, 102, 103
Implicant, 48 shift, 103-106
Essential Prime, 48
Prime, 48 saturation adder, 81
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setup time, 95 FSM, 128
sign extension, 8 producer consumer, 160
SOP register, 102
SOP nin , 45 trick
canonical, 30 expansion, 25
state diagram, 87 maxterm, 31
minterm, 29
timing simplification, 44
counter, 107
datapath and control, 157 wire logic, 76

diagrams, 34 word size, 5
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