
main

If Eusart1 Ready

Reset EUSART2

Infinite Loop

Fa
ls

e

True

If cmd = r

cmd = Eusart Data

True

If cmd = m
True

If cmd = S
True

If cmd = R
True

Static

Local

Global

Case
Method

User Def.
Function

Create Transmit Buffer
See Section B

Main
Initialize Components Check course website for

variables and functions

Create needed local vars

Transmit Buffer

For Every Message Char
and CheckSum Transmit Byte Data

Print Status

Exit

Print Buffer

For Every Message Char
and CheckSum Print Byte Data

Print Status

Exit

if receiveNewMessage

True

False

Adjust receiveNewMessage

Sec: A

Notes
Remember you can determine valid message byte data using '\0' as reference
Remember to include all features from the Lab06 requirements from the course
website

Transmit Transmit Buffer
See Section A

Print Receive Buffer
See Section A

Purpose
Transmit Buffer transmits the message buffer we crate using case 'm'
Print Buffer prints the buffer we create using the EUSART ISR



Reset checkSum

Static

Local

Global

Sec: B Create Write Buffer

Case
Method

User Def.
Function

Wait till EUSART1 has
cleared

Write to buffer Loop

If message length is < BufferSize - 1
 && character is not '\r' Write data to buffer

Adjust Checksum

Echo character to terminal

True

Write String Terminator to
Buffer ('\0")

Write checksum to buffer

Exit

Purpose

We need to read in data one character at a time and store it into a buffer so that we

can then transmit the data from the buffer.

Notes
Remember to keep track of the buffer index
Don't forget to add other requirements from the lab. Check the EENG 383 website
Check the block next to this one for some deeper explanations of the logic flow

Why < Buffer Size - 1 ?

Why '\r' ?

Extra: 

Consider the buffer structure

D
at

a 0
D

at
a 1

...

D
at

a N

'\0
'

C
H

KS
U

M

Buffer Size
As can be seen the last two indices need to be
free for the null terminator and the checksum

Remember 'enter' sends '\r\n'. In our PuTTy terminal '\r' move the cursor to
the leftmost position and '\n' moves it to the next line. By capturing '\r' first
we know that the user hit enter. 

Remember that you can assign variables within if statements. For example 
"((i = 3) == 3)" will evaluate to true as i is now 3. This can be used to simplify
the write to buffer loop.



EUSART ISR

Configuration

Static

Local

Global
Receive Buffer Index Tracking

ISR State Tracking

Enable Next ISR

If EUSART is Idle

If EUSART is Receiving msg

If EUSART is on Last Byte

Update StateWrite Data to Buffer Set receiveBusy

If Received Message is DoneWrite Data to Buffer

Update State

True

Update StateWrite Data to Buffer Set receiveBusy Set receiveMessage

False

Sec: C

Purpose

Data sent to the PIC needs to be processed in someway. Using EUSART we can

receive data bytes and subsequently process them. By implementing these processes

using interrupts, we are able to receive data while executing operations in the main

function.

Hint:
How can we detect the end of a message?
What character represents the end of a string?

Notes
Remember to keep track of the buffer index
Ensure you are reading from the right EUSART register
In order to understand the states understand the structure of
the receive buffer (See section B)

Note:
Why are we writing data after the message is
done? Remember the checksum.

Exit

Case
Method

User Def.
Function


